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SUMMARY

Persons with diabetes make up the fastest growing group of kidney dialysis and transplant recipients in the United States. In 
1985, when the first edition of Diabetes in America was published, 20,961 persons with diabetes were receiving renal replacement 
therapy, representing 29% of all new cases of end-stage renal disease (ESRD). By 2012, 239,837 persons with diabetes were on 
renal replacement therapy, accounting for 44% of all new ESRD cases. The increased count reflects growth in diabetes prevalence 
and increased access to dialysis and transplantation. Those with a primary diagnosis of diabetes have lower survival relative to other 
causes of ESRD, primarily because of the coexistent morbidity associated with diabetes, particularly cardiovascular diseases (CVD). 
While survival on dialysis has slowly improved across modalities since the 1990s, it remains reduced in persons with diabetes, half 
of whom die within 3 years of beginning dialysis in the United States. Similar to persons with ESRD in general, the leading causes of 
death among adults with diabetes who started dialysis in 1995–2009 were CVD (58% of the deaths) and infections (13% of the deaths). 
Kidney transplant recipients with diabetes have much better survival than those on dialysis, indicating a significant impact of the type of 
renal replacement therapy (transplant versus dialysis) on long-term survival.

Kidney failure affects about 1% of persons with diabetes in the United States. A considerably higher proportion, about 40%, have 
less severe kidney disease. Since the second edition of Diabetes in America was published in 1995, a wealth of new information has 
contributed substantially to the understanding of kidney disease associated with diabetes. In 2002, the National Kidney Foundation’s 
Kidney Disease Outcome Quality Initiative published a uniform definition of chronic kidney disease (CKD) and classification of its stages 
irrespective of underlying cause, thus providing a common language for defining both the severity and prognosis of kidney disease. The 
definition and classification of CKD were subsequently updated and refined by the Kidney Disease: Improving Global Outcomes in 2012. 
Accordingly, CKD is classified based on both albuminuria and glomerular filtration rate (GFR) categories, and together with kidney failure, 
these conditions are collectively referred to as CKD, regardless of etiology. In addition, the Kidney Disease: Improving Global Outcomes 
recommends using equations to estimate GFR (eGFR), which include the routinely obtained variables serum creatinine, age, sex, and 
race/ethnicity. The use of serum cystatin C, an endogenous filtration marker less influenced than serum creatinine by variations in 
muscle mass, diet, and tubular secretion, has emerged as an alternative or an adjunct to serum creatinine-based equations, particularly 
in persons with diabetes, in whom early kidney disease is often characterized by elevated GFR.

Since the late 1990s, new molecular mechanisms have been defined that are helping to explain the development and progression 
of diabetic kidney disease. Glomerular structural lesions were found to explain 95% of the variability in albumin excretion and 78% of 
GFR variability. The latter percentage increased to 92% by adding indices of glomerular-tubular junction abnormalities and interstitial 
expansion to the regression models. Podocyte injury appears to play an essential role in the progression of diabetic nephropathy. 
In persons with either type 1 or type 2 diabetes, podocyte changes may occur even before the increase in albuminuria, suggesting that 
diabetes itself may induce podocyte alterations.

Much has also been written about the prognostic implications of CKD. Elevated albuminuria and low GFR are associated with ESRD, 
fatal and nonfatal CVD, and all-cause mortality. A meta-analysis of 1,024,977 participants (nearly 13% with diabetes) from 30 general 
population and high-risk cardiovascular cohorts and 13 CKD cohorts indicated that while the absolute risks for all-cause and CVD 
mortality are higher in the presence of diabetes, the relative risks of ESRD or death by eGFR and albuminuria are similar with or 
without diabetes. These findings underscore the importance of kidney disease per se as a predictor of important clinical outcomes, 
regardless of the underlying cause of kidney disease. New biomarkers of diabetic kidney disease appear to have additional prognostic 
information beyond that provided by albuminuria. These markers include kidney injury molecule 1, liver fatty acid-binding protein, 
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N-acetyl-β-D-glucosaminidase, neutrophil gelatinase-associated lipocalin, β-trace protein, β2-microglobulin, and tumor necrosis factor 
receptors 1 and 2.

Many concepts about risk factors for CKD illustrated in this chapter have not changed since 1995, and where they have, those changes 
are discussed. In particular, major advances have been made in elucidating the genetic and epigenetic complexity of CKD, which 
contributed to defining cellular metabolic memory and the understanding of the longlasting effects of strict glycemic control observed 
in persons with type 1 diabetes or type 2 diabetes.

Improvements in the management of persons with diabetes and CKD have extended the time course from onset of severe albuminuria 
to ESRD and reduced the occurrence of CVD. In type 1 diabetes, the combined Diabetes Control and Complications Trial (DCCT) and its 
long-term follow-up, the Epidemiology of Diabetes Interventions and Complications (EDIC) observational study, indicated that intensive 
early metabolic control reduced the risk of impaired GFR by 50% and of CVD outcomes by 42%, with a specific 57% decrease in myocar-
dial infarction, stroke, or death from CVD, effects that were partly mediated by the reduced incidence of diabetic kidney disease. Among 
persons with type 2 diabetes, a meta-analysis of randomized controlled trials indicated that more intensive glycemic control (glyco-
sylated hemoglobin [A1c] <7%) was associated with a significant 10% reduction in albuminuria but had no effects on mortality, kidney 
failure, or other vascular outcomes. The Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial, targeting an A1c level <6.0% 
in the intensive intervention arm, reported an increased risk of CVD death for intensive versus conventional glycemic control, although 
it remains unclear whether this effect was related to more hypoglycemic episodes, the use of additional hypoglycemic medicines, or to 
the target glycemic level itself. Likewise, the modest gains in intermediate outcomes in the intensive treatment arms of the Action in 
Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) and the Veterans Affairs 
Diabetes (VADT) trial were counterbalanced by a twofold to threefold higher risk of severe hypoglycemia. Together, these trials indicate 
that glycemic control is extremely useful up to a point, but more aggressive glycemic control may be harmful. Similarly, for blood 
pressure control, 2014–2015 recommendations by the guideline-writing groups endorse less intensive and more individualized blood 
pressure targets for diabetes and CKD than in the past. Persons with diabetes and CKD require multidisciplinary management involving 
a combination of treatments and behavioral adjustments to delay progression of CKD and to prevent the associated complications. The 
Steno-2 study, a landmark prospective, randomized trial in Denmark, demonstrated that compared with conventional treatment, inten-
sive multifactorial intervention led to 46% lower death rate, 56% less severe albuminuria, 43% lower incidence of diabetic retinopathy, 
and 47% lower incidence of autonomic neuropathy during the 13.3-year study period.

INTRODUCTION

Important progress has been made 
since 1995, when the previous edition 
of Diabetes in America was published, 
in understanding the course and 
determinants of diabetic kidney disease 
and in its treatment (1,2,3,4,5,6,7). 
Widely accepted criteria for staging of 
chronic kidney disease (CKD) have been 
developed, based on the assessment of 
albuminuria and estimated glomerular 
filtration rate (eGFR) (7)—estimates of 
GFR and CKD staging criteria had not yet 
been developed in 1995. Nevertheless, 
kidney disease is still a major cause of 
morbidity and mortality in persons with 
diabetes, as indicated by the dramatic 
increase in the number of persons 
receiving renal replacement therapy 
since the 1980s. Increased availability 
of dialysis and transplants and the rising 
prevalence of diabetes are primarily 
responsible for this trend. Because 
kidney disease in diabetes is strongly 
associated with cardiovascular disease 

(CVD) and the development of end-stage 
renal disease (ESRD), the combined 
cost incurred by CKD and diabetes is 
associated with a greater percentage of 
the Medicare budget than that associated 
with congestive heart failure alone (2). For 
people with diabetes and kidney disease, 
the overall Medicare expenditures were 
approximately $25 billion in 2011 (2).

Projected increases in diabetes 
prevalence and the increasing frequency 
of both type 1 and type 2 diabetes in 
young people threaten to reverse the 
modest progress achieved with available 
treatments. Not only is the course of 
kidney disease in youth-onset type 2 
diabetes more aggressive than in type 1 
diabetes (4,5), but the Treatment Options 
for type 2 Diabetes in Adolescents and 
Youth (TODAY) study suggests it may 
also be more treatment resistant than 
kidney disease in adults with type 2 
diabetes (6). Although the development 

of new therapeutic options is essential 
for improving the management of this 
complex disease, diabetes prevention 
may ultimately offer the greatest benefit 
for stemming the rising tide of diabetic 
kidney disease.

This chapter has been updated to incorpo-
rate the substantial advances made in the 
past 20 years in the understanding of the 
pathogenesis, course, and management 
of CKD in persons with diabetes. It is 
not a systematic review of the literature 
but draws from recent publications that 
did perform such reviews. It also reflects 
the opinions of the authors about the 
challenges that may face persons with 
diabetes and CKD and those who care 
for them.
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DEFINITION, MEASUREMENTS, AND CLASSIFICATION

CKD attributable to diabetes, referred to 
as diabetic kidney disease, is defined by 
reduced kidney function or the presence 
of kidney damage for at least 3 months, 
regardless of kidney function (7). Kidney 
damage is ascertained by increased 
urinary markers, such as albuminuria, or 
by abnormal urinary sediment, abnormal 
imaging studies, or kidney biopsy (7). 
The clinical diagnosis of diabetic kidney 
disease is based largely on the finding of 
elevated excretion of urinary albumin in 
a person with diabetes in the absence of 
other kidney disease.

Persons are classified as having elevated 
albuminuria if the albumin-to-creatinine 
ratio (ACR) in at least two urine samples 
collected within 3–6 months is ≥30 mg/g 
in the absence of clinical or laboratory 
evidence of urinary tract infection (7). 
Elevated albuminuria, the earliest marker 
of diabetic nephropathy, is frequently 
associated with a progressive decline in 
kidney function and a high risk for kidney 
failure and CVD. Although albuminuria is a 
continuous risk factor, it is often arbitrarily 
divided into moderately increased albu-
minuria (ACR 30–299 mg/g)—generally 
characterized by stable kidney function 
and a greater risk for higher levels of 
albuminuria than an ACR <30 mg/g—
and severely increased albuminuria 
(ACR ≥300 mg/g), associated with 
arterial hypertension and a high risk of 
kidney failure (Table 22.1) (8). Moderate 
albuminuria is also referred to as micro-
albuminuria, and severe albuminuria as 
macroalbuminuria, overt nephropathy, or 
clinical proteinuria. Because albuminuria 
occurs as a continuum, the American 
Diabetes Association (ADA) recommends 
simply using the term albuminuria for 
an ACR ≥30 mg/g (9). Urinary albumin 
excretion can be determined from 24-hour, 
overnight, or shorter urine collection 
periods; however, urinary ACR measured 
in a first morning void specimen is highly 
correlated with the 24-hour albumin excre-
tion rate and is therefore an established 
and recommended way to assess urinary 
albumin excretion. Differences in methods 
of urine collection, albumin and creatinine 
measurements, reporting of results, and 

lack of standardized reference intervals 
for ACR often make comparisons between 
studies difficult.

Reduced kidney function is defined by a 
GFR <60 mL/min/1.73 m2, and kidney 
failure by a GFR <15 mL/min/1.73 m2 
(Table 22.2) (7,8). Accurate determina-
tion of GFR is best achieved by infusing 
special markers into the bloodstream 
that are filtered at the glomerulus, 
but not secreted or reabsorbed by 
the tubules (e.g., inulin, iothalamate, 
iohexol, or 51Cr-EDTA), and measuring 
their disappearance from the blood or 
their appearance in the urine. Because 
such testing is laborious and expensive 
to use in large populations, the National 

Kidney Foundation (NKF) recommends 
using equations to estimate GFR that 
include the routinely obtained variables 
serum creatinine, age, sex, and race/
ethnicity. The Modification of Diet in 
Renal Disease (MDRD) study equation 
(10) is the most widely used equation 
for estimating GFR in adults in the office 
setting and is reasonably accurate 
when the estimate is <60 mL/min/1.73 
m2 (11). Precision is lower and bias is 
higher at higher eGFR values, due in 
part to declining precision of creatinine 
measurement at its lower concentrations 
(12). The newer Chronic Kidney Disease 
Epidemiology Collaboration equation 
uses the same variables as the MDRD 
equation but with reduced bias and 

TABLE 22.1. Albuminuria Categories According to KDIGO Classification

KDIGO CLASSIFICATION EQUIVALENT

Normal to Mildly 
Increased (A1)

Moderately Increased 
(A2)*

Severely Increased 
(A3)†

AER
µg/min <20 20–200 >200
mg/24 hours <30 30–300 >300

ACR
mg/g <30 30–299 >300
mg/mmol <3 3–30 >30

PER (mg/24 hours) <150 150–500 >500

PCR
mg/g <150 150–500 >500
mg/mmol <15 15–50 >50

Protein reagent strip Negative to trace Trace to + + or greater

The conversions are rounded; for an exact conversion from mg/g of creatinine to mg/mmol of creatinine, multiply 
by 0.113. ACR, urinary albumin-to-creatinine ratio; AER, albumin excretion rate; KDIGO, Kidney Disease: Improving 
Global Outcomes; PCR, protein-to-creatinine ratio; PER, protein excretion rate.
* Relative to young adult level
† Including nephrotic syndrome (albumin excretion usually >2,200 mg/24 hours [ACR >2,220 mg/g; >220 

mg/mmol]).

SOURCE: Reference 8, copyright © 2013 Elsevier, reprinted with permission

TABLE 22.2. Kidney Function Categories According to KDIGO Classification

KIDNEY FUNCTION CATEGORY GFR  (ML/MIN/1.73 M2) TERMS

G1 ≥90 Normal or high

G2 60–89 Mildly decreased*

G3a 45–59 Mildly to moderately decreased

G3b 30–44 Moderately to severely decreased

G4 15–29 Severely decreased

G5 <15 Kidney failure (G5D, if treated by dialysis)

GFR categories G1 and G2 fulfill the criteria for CKD in the presence of markers of kidney damage (e.g., elevated 
albuminuria). Mildly decreased kidney function (G2) in the absence of other markers is not classified as CKD. CKD, 
chronic kidney disease; GFR, glomerular filtration rate; KDIGO, Kidney Disease: Improving Global Outcomes.
* Relative to young adult level

SOURCE: Reference 8, copyright © 2013 Elsevier, reprinted with permission
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similar precision at higher eGFR values, 
thereby reducing the rate of false-positive 
results at levels ≥60 mL/min/1.73 m2, i.e., 
the rate of classifying persons to eGFR 
<60 mL/min/1.73 m2 (13). The use of 
serum cystatin C, an endogenous filtra-
tion marker that is less influenced than 
serum creatinine by variations in muscle 
mass, diet, and tubular secretion is being 
explored as an alternative or an adjunct to 
serum creatinine-based equations, partic-
ularly in persons with diabetes, in whom 
early kidney disease is often characterized 
by elevated GFR. Regardless of etiology, 
CKD is classified based on both albumin-
uria and eGFR categories (Figure 22.1).

In persons with diabetes, CKD may or 
may not represent diabetic kidney disease, 
as illustrated in Table 22.3 (14). In those 
with type 1 diabetes of ≥10 years dura-
tion, CKD should be attributed to diabetic 
kidney disease (14). Among persons 
with type 2 diabetes in particular, an 
eye examination is a useful, simple, and 
noninvasive test for discerning the pres-
ence of diabetic kidney disease (15,16). A 
meta-analysis of 2,012 pooled patients 
indicated that diabetic retinopathy has 
a sensitivity of 0.65 (95% confidence 

interval [CI] 0.62–0.68) and specificity 
of 0.75 (95% CI 0.73–0.78) for diabetic 
kidney disease (15). The presence of 
diabetic retinopathy in those with severe 
albuminuria is strongly suggestive of 
diabetic kidney disease, whereas the 
absence of diabetic retinopathy in those 
with normal or moderate albuminuria and 
GFR <60 mL/min/1.73 m2 suggests nondi-
abetic CKD (15,17). Nondiabetic causes 
of CKD should be considered under the 
circumstances listed in Table 22.4 (14).

Figure 22.1 illustrates the Kidney Disease: 
Improving Global Outcomes (KDIGO) CKD 

classification that reflects prognosis based 
on the combined measures of GFR and 
albuminuria (8,18). The risk associations of 
GFR and albuminuria categories with renal, 
cardiovascular, and all-cause mortality 
outcomes are reviewed in the following 
sections. For screening and management 
of kidney disease in persons with diabetes, 
the NKF and the ADA recommend annual 
ACR screening starting at 5 years duration 
of type 1 diabetes and at diagnosis of 
type 2 diabetes (8,19). Serum creatinine 
measurements and eGFR reporting are 
recommended at least annually in adults 
with diabetes, regardless of ACR level.

FIGURE 22.1.

TABLE 22.3. Likelihood of Chronic Kidney Disease Due to Diabetic Kidney Disease, by 
Levels of GFR and Albuminuria

GFR  
(ML/MIN/1.73 M2) CKD STAGE*

ALBUMINURIA

Normal Moderate Severe

≥60 1 + 2 At risk† Possible diabetic KD Diabetic KD

30–59 3 Unlikely diabetic KD‡ Possible diabetic KD Diabetic KD

<30 4 + 5 Unlikely diabetic KD‡ Unlikely diabetic KD Diabetic KD

CKD, chronic kidney disease; GFR, glomerular filtration rate; KD, kidney disease.
* Staging may be confounded by treatment with renin-angiotensin system inhibitors or angiotensin receptor 

blockers, which reduce albuminuria.
† Kidney biopsy in these persons can show histological evidence of diabetic glomerulopathy.
‡ In the absence of histological evidence, these persons should be considered to have diabetes and CKD and may 

require further investigation.

SOURCE: Reference 14, copyright © 2007 Elsevier, reprinted with permission

 Classification of Chronic Kidney Disease to Indicate Prognosis Based on the Combined Measures of Albuminuria and 
Estimated Glomerular Filtration Rate

Prognosis of CKD by GFR  
and Albuminuria Categories

Persistent Albuminuria Categories: Description and Range

A1 A2 A3

Normal to mildly increased Moderately increased Severely increased

<30 mg/g
<3 mg/mmol

30–300 mg/g
3–30 mg/mmol

>300 mg/g
>30 mg/mmol
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G1 Normal or high ≥90 No CKD* CKD1† CKD1‡

G2 Mildly decreased 60–89 No CKD* CKD2† CKD2‡

G3a Mildly to moderately decreased 45–59 CKD3a† CKD3a‡ CKD3a§

G3b Moderately to severely decreased 30–44 CKD3b‡ CKD3b§ CKD3b§

G4 Severely decreased 15–29 CKD4§ CKD4§ CKD4§

G5 Kidney failure <15 CKD5§ CKD5§ CKD5§

CKD stages based on both albuminuria and GFR levels are indicated in each cell. Symbols rank adjusted relative risk for five outcomes from a meta-analysis of general population 
cohorts: all-cause mortality, cardiovascular mortality, kidney failure treated by dialysis and transplantation, acute kidney injury, and progression of kidney disease. CKD, chronic 
kidney disease; GFR, glomerular filtration rate; KDIGO, Kidney Disease: Improving Global Outcomes.
* Low risk (if no other markers of kidney disease)
† Moderately increased risk
‡ High risk
§ Very high risk

SOURCE: Reference 8, copyright © 2013 Elsevier, reprinted with permission; and Reference 18
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TABLE 22.4. Situations That Prompt Consideration of Nondiabetic Cause(s) of Chronic 
Kidney Disease

Absence of diabetic retinopathy

Low or rapidly decreasing GFR

Rapidly increasing proteinuria or nephrotic syndrome

Refractory hypertension

Presence of active urinary sediment

Signs or symptoms of other systemic disease 

30% reduction in GFR within 2–3 months after initiation of an ACE inhibitor or ARB

ACE, angiotensin-converting enzyme; ARB, angiotensin II receptor blocker; GFR, glomerular filtration rate.

SOURCE: Adapted from Reference 14

PATHOPHYSIOLOGY AND CLINICAL COURSE

Diabetic kidney disease typically 
progresses through a number of phases 
in which albumin or protein excretion 
increases, and GFR may rise and subse-
quently falls, frequently culminating in 
uremia or ESRD (Figure 22.2) (20,21). A 
diagram of the typical clinical progression 
of diabetic kidney disease and some of 
the factors contributing to it is shown in 
Figure 22.3 (22,23,24,25,26,27,28,29). 
The clinical manifestations of kidney 
disease are similar in both type 1 and 
type 2 diabetes. The major histologic 
changes of diabetic kidney disease and 
their relationships with kidney disease 
progression are discussed in detail in 
the Morphometry section.

ALBUMIN EXCRETION
Urinary albumin excretion is usually 
normal at the diagnosis of type 1 diabetes, 
except when ketoacidosis is present. 
Moderate albuminuria in the early years of 
diabetes is associated with poor metabolic 
control but is frequently transitory 
(21,30,31,32,33,34) and rarely persistent 
in the first 5 years (35). With treatment, 
normalization of albuminuria occurs in 
58% of persons with type 1 diabetes 
(36), whereas persistent regression 
without treatment is observed in 16% 
(37). Glycosylated hemoglobin (A1c) <8% 
(<64 mmol/mol), systolic blood pressure 
<115 mmHg, and low levels of both 
cholesterol (<198 mg/dL [<5.13 mmol/L]) 
and triglycerides (<145 mg/dL 
[<1.64 mmol/L]) are associated with the 
regression of albuminuria (36). Persons 
with persistent moderate albuminuria 
often progress to severe albuminuria (34) 
over a period of 10–20 years (3%–4% 

per year) (37,38), with hypertension and 
proliferative retinopathy also developing 
with advancing disease. Once overt 
nephropathy develops, albuminuria 
regression is less frequent (34,39), and 
the GFR generally falls at a variable rate 
(2–20 mL/min/year) (37).

Because the onset of type 2 diabetes is 
more insidious, poor glycemic control and 
elevated blood pressure may be present 

for several years before diagnosis, and 
therefore, elevated albuminuria is also 
frequently present at diabetes diagnosis. 
Approximately 3% of newly diagnosed 
persons with type 2 diabetes have severe 
albuminuria (37). The course of urinary 
protein excretion in type 2 diabetes is 
more heterogeneous than in persons with 
type 1 diabetes, in part reflecting a greater 
heterogeneity of kidney lesions due to the 
relatively higher prevalence of nondiabetic 

FIGURE 22.2. Outline of the Natural History of Diabetic Kidney Disease in Persons With 
Type 1 Diabetes

G
FR

 (m
L/

m
in

)

0 

100 

150 

First exam Follow-up exam

U
AE

 (μ
g/

m
in

)

Diabetes Duration (Years)

0 

20 

5 

70 

200 

700 

2000 

7000 

280 4 8 12 16 20 24

Figure is based on data from 20 men, all of whom developed nephropathy; time between the first examination and 
follow-up averaged 12±3 years; not all persons had both examinations. Curved lines represent the typical course 
of GFR (log scale) and UAE; the box in the GFR panel represents the mean±standard deviation of GFR in healthy 
subjects; the small vertical box in the UAE panel represents the normal range of UAE; and the large horizontal box 
represents the moderate albuminuria range. GFR, glomerular filtration rate; UAE, urinary albumin excretion.

SOURCE: Reference 21, copyright © 1990 American Diabetes Association, reprinted with permission from The 
American Diabetes Association
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kidney disease, a consequence of the 
older age at onset of diabetes (40,41). 
About 25% of persons with type 2 diabetes 
have moderate albuminuria after 10 years, 
and 50% of those who develop moderate 
albuminuria do so within 20 years of diag-
nosis (37).

GLOMERULAR HEMODYNAMIC 
FUNCTION
In healthy adults, the GFR ranges from 
90 to 120 mL/min/1.73 m2, is stable 
through mid-adult life, and declines by 
approximately 1 mL/min per year after 
age 50 years, with the onset of global 
kidney sclerosis (42,43,44). The onset of 
diabetes is associated with hemodynamic 
changes in the kidney circulation that lead 
to increased renal plasma flow, glomerular 
capillary hyperperfusion, and an increased 
glomerular transcapillary hydraulic pres-
sure gradient (Figures 22.4 and 22.5) 
(45,46,47,48,49,50,51).

Glomerular capillary hypertension 
and the ensuing increase in filtration 
pressure are partly responsible for the 
elevation of GFR, but various other 
glomerular and tubular factors also 
influence the magnitude of the hyper-
filtration (52,53,54). The prevalence 
of hyperfiltration, generally defined as 
a GFR of at least two standard devia-
tions above the mean GFR in persons 
with normal glucose tolerance, varies 
from 40% to 60% in persons with type 
1 diabetes and from 7% to 73% in those 
with type 2 diabetes (26,55,56,57,58,59). 
The large variations in these estimates 
are attributed mostly to differences in 
age, race/ethnicity, glycemic control, 
duration of diabetes, absence of diet 
standardization, and methodologies 
used to measure and report GFR among 
different populations. In addition, simple 
single compartment models of plasma 
disappearance curves will overestimate 
GFR, and other methods are needed to 
accurately measure GFR and define its 
normal range.

Several investigators have reported a 
relationship between hyperfiltration and 
the subsequent development of moderate 
albuminuria and progressive nephropathy 

(60,61,62), but others have not (24,25,63). 
Hyperfiltration may also reflect a gener-
alized vascular dysfunction related to 
diabetes that in turn predisposes to 
diabetic nephropathy (64,65).

After the initial elevation at onset of 
diabetes, GFR decreases to a near 
normal range in response to meta-
bolic control in both type 1 and type 2 
diabetes (66,67,68,69), but usually not 
to levels found in nondiabetic persons 
(47,69,70,71). In some, this reversal could 
reflect the initiation of progressive kidney 

disease, as suggested by the appearance 
of global glomerular sclerosis and the 
fall in single-nephron filtration coefficient 
(72); in others, it could represent a purely 
functional change in kidney vasomotion 
associated with improvement in diabetes 
control or simply the intrinsic variability 
in GFR in the absence of significant histo-
pathologic changes (73). Distinguishing 
between these two potential causes of 
GFR decline requires either observation 
of GFR over a long period of time to 
determine whether it plateaus, reverses 

FIGURE 22.3. Risk Factors For and Clinical Course of Kidney Disease in Diabetes

 

















































The thick horizontal arrows represent the reversibility of albuminuria with progressive kidney disease. BMI, body 
mass index; BP, blood pressure; ESRD, end-stage renal disease; GFR, glomerular filtration rate; IGT, impaired 
glucose tolerance.

SOURCE: Reference 22

FIGURE 22.4. Mean Glomerular Filtration Rate in Men With Newly Diagnosed Type 1 
Diabetes and No Diabetes

 



































Subjects were 31 nondiabetic men and 11 men with newly diagnosed and untreated type 1 diabetes; horizontal 
lines are mean±standard deviation. The mean GFR was 41% higher in the diabetic subjects than in the nondiabetic 
subjects. GFR, glomerular filtration rate.

SOURCE: Reference 49, copyright © 1971 Informa Healthcare, reprinted with permission
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direction, or continues to decline to 
pathologic levels, or attention to other 
biomarkers, including albuminuria.

Coincident with the initial elevation 
of GFR at the diagnosis of diabetes is 
slightly elevated urinary albumin excre-
tion, although levels in the moderate 
albuminuria range or above are usually 
seen only after several years of diabetes 
(Figure 22.3) (22). The GFR in persons 
with moderate albuminuria is higher, on 
average, than in those with normal urinary 
albumin excretion (74,75). In those with 
severe albuminuria, it is lower, although in 
type 2 diabetes, GFR may still be within the 
normal range (76,77). Cross-sectional data 
suggest that GFR declines in persons with 
severe albuminuria, reflecting progressive 
glomerulosclerosis and loss of filtration 
surface area. Longitudinal studies confirm 
this hypothesis (78,79). The absence of 
albuminuria, however, does not preclude 
the presence of progressive kidney damage 
(see the section Incidence of Elevated 
Urinary Albumin Excretion) (80).

Kidney hemodynamic alterations induced 
by hyperglycemia and hypertension are 
believed to cause mechanical stretch 
and shear stress on endothelial cells 
and the mesangium, activating complex 
biochemical pathways that increase 
extracellular matrix production, hyper-
glycemia-induced injury, and podocyte 
damage and loss. These alterations 
ultimately lead to defects in selective 
glomerular capillary permeability, albu-
minuria, protein extravasation into the 
glomerular mesangium, expansion of 
mesangial matrix, and glomerulosclerosis 
(81,82,83,84,85,86,87,88).

MORPHOMETRY
The histologic changes in the kidneys of 
persons with type 1 diabetes and CKD 
are well described, typically homogenous, 
and predict development of elevated albu-
minuria, ESRD, and cardiovascular death 
(89,90,91). On the other hand, the kidney 
lesions underlying CKD in type 2 diabetes 
are more heterogeneous (92,93). Whether 
the natural history of CKD in diabetes 
varies by histologic lesion remains 
unknown, although longitudinal studies 

suggest a relationship between renal 
lesions and GFR decline (94,95). This 
section reviews the morphometric charac-
teristics of diabetic kidney disease.

To appear in the urine, albumin must 
cross each layer of the glomerular filtra-
tion barrier consisting of the endothelial 
surface layer, fenestrated endothelial 
cells, glomerular basement membrane, 
and the glomerular epithelial cells or 
podocytes. Elevated albuminuria is an 
early clinical indicator of diabetic kidney 
disease, reflecting at the glomerular level 
the destruction of the endothelial surface 
layer (96,97,98,99), reduction in size and 
density of endothelial cell fenestrations 
(100,101,102), and thickening of the base-
ment membranes. Subsequent mesangial 
expansion and podocyte injury and 
detachment further increase albuminuria, 
decreasing the available capillary filtration 
surface and leading to glomerulosclerosis. 
In addition to the glomerular morphologic 
lesions, diabetes progressively affects the 
kidney tubules, interstitium, and arterioles.

One of the earliest structural abnor-
malities in diabetes is thickening of 
the glomerular and tubular basement 
membranes due to excessive deposition 
of normal extracellular matrix components 

(85,93,103,104). Glomerular basement 
membrane thickening strongly correlates 
with albuminuria and less with GFR, 
suggesting that it is a good indicator 
of early diabetic kidney disease. This 
alteration is followed by an increase in 
the mesangial volume per glomerulus 
(fractional mesangial volume), primarily 
through expansion of the mesangial 
matrix, with the increase in the volume 
fraction of the mesangial cellular compo-
nent playing a secondary role (105). The 
fractional mesangial volume is correlated 
inversely with GFR, and positively with 
ACR and hypertension (57,104,106), and 
is therefore a strong predictor of progres-
sive kidney dysfunction (Figure 22.6) 
(107). Virtually all persons with type 1 
diabetes and advanced kidney disease 
have markedly thickened glomerular base-
ment membrane and diffuse mesangial 
expansion. About 25% of persons with 
>10 years of diabetes duration present 
with Kimmelstiel-Wilson nodules, which 
are rounded, paucicellular, lamellated 
accumulations of mesangial matrix at the 
periphery of the glomerulus (108,109). 
Kimmelstiel-Wilson lesions correlate with 
longer diabetes duration, higher serum 
creatinine, and more severe diabetic 
retinopathy (110). Mesangial expansion 
changes the architecture of the glomerular 

FIGURE 22.5. Glomerular Filtration Rate and Renal Plasma Flow in Individuals With Type 2 
Diabetes and Without Diabetes

 

























































































GFR and effective renal plasma flow were measured in 110 persons with type 2 diabetes and 32 nondiabetic 
subjects; mean values are shown for each group. Mean GFR averaged 23% higher and renal plasma flow 13% higher 
in the diabetic subjects. GFR, glomerular filtration rate.

SOURCE: Reference 51, copyright © 1992 Elsevier, reprinted with permission
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tuft, restricts the cellular component, 
distorts and occludes glomerular capil-
laries, decreasing the available capillary 
filtration surface and contributing to the 
decline in kidney function. Glomerular 
hypertrophy may compensate for the 
loss of filtration surface area, providing 
a means by which GFR is maintained in 
progressive kidney disease (111).

Podocyte injury appears to play an 
essential role in the progression of 
diabetic nephropathy. The podocyte with 
its extended foot processes, provides 
structural support for the glomerular 
capillaries, as well as hydraulic resistance, 
and prevents the escape of proteins into 
the urinary space (112). With glomer-
ular hypertrophy, the podocytes, which 
have a limited proliferative potential 
(113,114,115,116), stretch their foot 
processes more broadly to maintain 
coverage of the expanded glomerular 
basement membrane, a compensatory 
mechanism believed to influence their 
functional integrity (117). In addition, 
glomerular endothelial cell dysfunction, 
which precedes podocyte injury (100), 
appears to contribute to the latter through 
several mechanisms, including protein 
overload and toxicity at the podocyte 
level due to saturation of clearance 
mechanisms (118), increased shear stress 
(97), decreased endothelial nitric oxide 
synthase (eNOS) expression and activity 
(119,120), and production of cytokines, 

proteoglycans, and growth factors (100). 
Podocytes are known to absorb excess 
albumin arriving in the surrounding urinary 
space, and this increased workload 
may initiate inflammatory signaling and 
contribute to changes in podocyte- 
associated molecules and foot process 
effacement (121,122). Sustained mechan-
ical stress and glomerular hypertension 
may ultimately lead to podocyte detach-
ment and loss in the urine, leaving areas 

of bare glomerular basement membrane 
that further enhance loss of protein 
(Figure 22.7) (102). These denuded areas 
may initiate glomerular-tubular junction 
abnormalities and focal or global glomer-
ular sclerosis (103). In persons with either 
type 1 (123) or type 2 diabetes (102,124), 
podocyte changes may occur even 
before the increase in ACR, suggesting 
that diabetes itself may induce podocyte 
alterations. In a study of persons with 

FIGURE 22.6. Glomerular Basement Membrane and Fractional Mesangial Volume by Albuminuria in Persons With Type 1 Diabetes

 
































Vv
(M

es
/g

lo
m

) 

0.80 

0.60 

0.40 

0.20 

0 
MANA P

P=0.014

P<0.001

P<0.001

GBM width and Vv(Mes/glom) in 88 normoalbuminuric (NA), 17 moderately albuminuric (MA), and 19 proteinuric (P) persons with type 1 diabetes. Normoalbuminuria is defined 
as AER <20 µg/min, moderate albuminuria as AER 20–200 µg/min, proteinuria as AER ≥200 µg/min on at least two of three measurements. The shaded bars represent mean±2 
standard deviations in a group of 76 age-matched normal control subjects. AER, albumin excretion rate; GBM, glomerular basement membrane; Vv(Mes/glom), fractional 
mesangial volume.

SOURCE: Reference 107, copyright © 2002 American Diabetes Association, reprinted with permission from The American Diabetes Association

FIGURE 22.7. Peripheral Glomerular Capillaries From Pima Indians With Type 2 Diabetes

Transmission electron microscopy, x 11,280. (A) Intact podocyte foot processes (P) attached to glomerular base-
ment membrane (GBM). (B) Local podocyte detachment (PD) and denuded GBM. CL, capillary lumen; E, capillary 
endothelium.

SOURCE: Original figure provided by R. G. Nelson.
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type 2 diabetes, moderate albuminuria 
was associated with 20% and severe albu-
minuria with 40% podocyte loss relative 
to normal albuminuria (117). Moreover, 
individuals with moderate albuminuria 
had a 35% decline in the number of podo-
cytes per glomerulus, and half of them 
progressed to severe albuminuria during 
4 years of follow-up (72). Similarly, a lower 
number of podocytes and changes in the 
shape of the remaining podocytes were 
found in persons with type 2 diabetes 
and elevated ACR when compared with 
those with normal ACR and similar frac-
tional mesangial volume, indicating that 
changes in podocyte structure and density 
occur early during diabetic nephropathy 
and contribute to albuminuria. Other 
cross-sectional and experimental studies 
have reported similar findings (115,125). 
Some data suggest a repair mechanism 
via recruitment of parietal epithelial 
cells that is overwhelmed when podo-
cyte loss exceeds a modest threshold 
(126,127,128). Consequently, significant 
damage to the podocytes is a potential 
starting point for irreversible glomerular 
injury in diabetic kidney disease.

Interstitial expansion, in contrast with 
mesangial expansion, primarily involves 
a cellular component represented by 
T lymphocytes and macrophages that 
infiltrate the interstitium, with subsequent 
fibrosis and declining GFR (129,130). 
Efferent and afferent arteriolar hyalinosis, 
consisting of intramural accumulations 
of plasma proteins and lipids within 
kidney arterioles, may occur within a few 
years of diabetes onset (104,131,132). 
Although afferent arteriolar hyalinosis is 
less specific to diabetic nephropathy, both 
lesions are associated with increased 
albumin excretion and progression of 
kidney disease. Similar exudative lesions 
may occur in the glomerular capillaries 
(hyalinosis), Bowman’s capsule (capsular 
drops) (133,134), or proximal convoluted 
tubules and are generally associated with 
advanced diabetic nephropathy (104).

Abnormalities of the glomerular-tubular 
junction, typically associated with 
proteinuria (135), include focal adhesions, 
atrophic tubules, or atubular glomeruli. 

These lesions further contribute to the loss 
of kidney function in diabetes. Advanced 
diabetic kidney disease is characterized 
by a marked reduction in the number of 
functioning glomeruli and further compen-
satory enlargement of those that remain 
functional. This stage is associated with 
markedly reduced GFR.

The intra- and extraglomerular morpho-
logic changes described in this section 
progress at variable rates. Nonetheless, 
in one study, glomerular structural 
lesions explained 95% of the variability 
in albumin excretion and 78% of GFR 
variability (107,135). The latter percentage 
increased to 92% by adding indices of 
glomerular-tubular junction abnormalities 
and interstitial expansion to the regression 
models (135).

Albuminuria, however, is neither a  
sensitive nor specific early biomarker of 
progression to ESRD, and the absence of 
albuminuria does not exclude the pres-
ence of relatively advanced diabetic renal 
lesions and progressive kidney damage 
(136,137,138,139,140,141,142,143,144). 
New biomarkers of diabetic kidney disease 
appear to have additional prognostic  
information beyond that provided by albu-
minuria. These markers include kidney 
injury molecule 1 (KIM-1), liver fatty acid-
binding protein (L-FABP), N-acetyl-β-D- 
glucosaminidase (NAG), neutrophil 
gelatinase-associated lipocalin (NGAL) 
(145,146,147,148,149,150,151,152,153, 
154,155,156,157,158,159,160,161), 
β-trace protein, β2-microglobulin (162,163, 
164), and tumor necrosis factor receptors 
1 and 2 (165,166,167,168,169,170,171, 
172). Tumor necrosis factor-alpha receptor 
1 and receptor 2 consistently enhance the 
discrimination of the survival models for 
ESRD beyond that achievable by the clini-
cally recognized risk factors in persons 
with type 1 or type 2 diabetes (165,166, 
167,168,169,170,171,172). Evaluation of 
other biomarkers in relation to diabetic 
kidney disease often shows conflicting 
results (145,146,147,148,149,150,151, 
152,153,154,155,156,157,158,159,160, 
161). This may be due to differences in 
study design, inclusion of persons without 
diabetes, use of surrogate or composite 

outcomes, or incomplete covariate adjust-
ment in risk models (161).

SELECTIVE GLOMERULAR 
PERMEABILITY
The glomerular capillary wall serves as a 
filter that discriminates among molecules 
on the basis of size, electrical charge, and 
configuration. Studies of glomerular 
filtrate collected by micropuncture or 
narrow size fractioning of exogenous  
polymers, such as dextran, indicate that 
albuminuria is primarily the result of 
impairment of the electrostatic barrier 
within the glomerulus, consequent to a 
decrease in endothelial cell glycocalyx 
(173,174) and heparan sulfate content of 
the glomerular basement membrane 
(175,176), and by changes in size selec-
tivity across the glomerular capillary wall 
(Figure 22.8) (56,177,178,179,180,181, 
182,183,184,185,186,187,188,189,190, 
191,192,193).

A comparison of the mean dextran sieving 
profiles in 43 initially microalbuminuric 
Pima Indians with type 2 diabetes, who 
were followed for up to 8 years, showed 
no difference in the size selectivity of 
the glomerular filtration barrier between 
participants with moderate albuminuria 
and long-term normoalbuminuric control 
subjects (194). However, participants 
with severe albuminuria after 4 years 
of follow-up had a significantly higher 
fractional clearance of the large-radius 
test molecules than normoalbuminuric 
controls, with a reduction at the low-radius 
end, as shown in Figure 22.9. When the 
macromolecular shunt was analyzed 
as a function of albumin excretion, an 
abrupt transition was apparent at an ACR 
of approximately 3,000 mg/g (Figure 
22.10), whereas the contribution of the 
shunt in the moderate albuminuria range 
was very small. These data suggest that 
permselectivity defects in the glomerular 
filtration barrier have little or no role in the 
development of moderate albuminuria. 
By contrast, a primary contributor to 
severe albuminuria is the shunt resulting 
from the presence of large pores within 
the glomerular capillary wall through 
which plasma proteins can easily pass 
(195,196,197,198). Morphometric data 
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in participants with severe albuminuria 
identified a significant correlation between 
the shunt magnitude and podocyte foot 
process width (p=0.027) (Figure 22.11) 
(194), which was not discernible in 
participants with moderate albuminuria. 
A similar size-selectivity defect has been 
reported in type 1 diabetes (190,195). 
These findings are consistent with the view 
that permselectivity defects responsible 
for increased albumin excretion may 
be focal and likely due to podocyte foot 
process effacement and simplification 
and, possibly, to defective intercellular 
junctions (199).

With the application in the late 1990s of 
multiphoton fluorescence techniques to 
kidney research, direct imaging of the 
structure and function of living kidney 
tissue was possible (200). In some studies, 
this technique revealed what appeared 
to be a much higher albumin glomerular 
sieving coefficient than was calculated or 
measured by micropuncture, prompting 
some investigators to propose alternative 
explanations for the facilitated urinary 
clearance of albumin in diabetic kidney 
disease (200,201), including the idea 
that elevated albuminuria is the result 
of a proximal tubular cell dysfunction in 
retrieving and degrading albumin and 
does not reflect an alteration in glomerular 
permselectivity (201,202). Later studies 
using improved imaging techniques do 
not support this concept and confirm that 
glomerular filtration barrier permeability 
to macromolecules is largely restricted to 
areas of podocyte damage (203,204,205).

FIGURE 22.8. Fractional Dextran Clearance Profile in Pima Indians With and Without 
Type 2 Diabetes

 






























      




The figure compares the fractional dextran clearance profile in persons with type 2 diabetes and those with normal 
glucose tolerance. Fractional dextran clearances in subjects with diabetes were uniformly elevated over the entire 
range of molecular radii tested. The elevation was most marked at the large radius end of the profile, with statistically 
significant differences (p<0.05) for dextrans of ≥48 Å radius.

SOURCE: Reference 56

FIGURE 22.9. Dextran Sieving Curves in Pima Indians With Type 2 Diabetes

 

























      



Sieving coefficient was measured in 31 persons with diabetes and severe albuminuria at 48 months follow-up (▵) and 
11 diabetic controls with long-term normoalbuminuria (○). Lines are best-fit splines. A significant elevation of the 
sieving curve at its large-radius end and a tendency toward depression at the low-radius end is found in persons with 
severe albuminuria. Error bars represent one standard deviation. ESR, Einstein-Stokes radius.
* p<0.05

SOURCE: Reference 194, copyright © 2000 American Society of Nephrology, reprinted with permission
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FIGURE 22.10. Graph of the Shunt Magnitude as a Function of Albuminuria

 







    


  





The shunt magnitude parameter (ω0) as a function of albuminuria, as reflected by (A) the fractional clearance of 
albumin and (B) the urinary albumin-to-creatinine ratio (A/C) —for the combined moderate (○) and severe (▴) 
albuminuria groups (n=73). The shaded bar represents the 25th–75th percentiles of the ω0 distribution of normoal-
buminuric control subjects.

SOURCE: Reference 194, copyright © 2000 American Society of Nephrology, reprinted with permission

FIGURE 22.11. Relationship Between Shunt Magnitude and Mean Podocyte Foot Process 
Width

 















    





Shunt magnitude (ω0) and mean foot process width in 10 persons with severe albuminuria who had kidney biopsies.

SOURCE: Reference 194, copyright © 2000 American Society of Nephrology, reprinted with permission
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ELEVATED URINARY ALBUMIN EXCRETION

As noted earlier in this chapter, urinary 
albumin excretion is often increased at the 
diagnosis of both types of diabetes but 
frequently returns to normal with the insti-
tution of glycemic control (21,30,31,32). 
Persistent albuminuria at the onset of 
type 2 diabetes, however, may reflect 
diabetes that has remained undiagnosed 
for years (32) or the presence of kidney 
disease unrelated to diabetes, since other 
kidney diseases are common at the ages 
when type 2 diabetes typically develops. 
On the other hand, elevated urinary 
albumin excretion is found in persons with 
impaired glucose tolerance (206,207,208), 
raising the possibility that hyperglycemia, 
even at levels below those diagnostic of 
diabetes, is sometimes associated with 
kidney abnormalities.

PREVALENCE OF ELEVATED 
URINARY ALBUMIN EXCRETION
The prevalence of elevated albuminuria 
(ACR ≥30 mg/g) in the U.S. adult popu-
lation with self-reported diabetes was 
35.9%, 32.6%, and 29.3% based on a 
one-time random spot urine measure-
ment collected for the National Health 
and Nutrition Examination Surveys 
(NHANES) 1988–1994, 1999–2004, and 
2007–2012, respectively (Table 22.5) (1). 
When measured in a first morning void 
sample, the prevalence of ACR ≥30 mg/g 
in NHANES 2009–2010 participants with 
self-reported diabetes was 15.7% (95% 
CI 12.3%–19.0%) (209) (prevalences of 
moderate albuminuria 11.9%, 95% CI 
9.7%–14.4%, and severe albuminuria 3.8%, 
95% CI 2.2%–6.4%, were computed in a 
new analysis for Diabetes in America, 3rd 
edition). These estimates were signifi-
cantly lower than the 24.1% prevalence 
(95% CI 19.8%–28.2%) of ACR ≥30 mg/g 
obtained from a random spot urine in 
the same population (prevalences of 
moderate albuminuria 19.3%, 95% CI 
16.0%–23.1%, and severe albuminuria 
4.8%, 95% CI 3.1%–7.4%, were computed 
in a new analysis for Diabetes in America). 
Prevalence of elevated ACR was signifi-
cantly lower in the NHANES population 
without diabetes (6.2%, 95% CI 4.9%–7.5%, 
in random urine samples and 3.7%, 95% 
CI 2.9%–4.5%, in first morning voids) 

(209). As mentioned in the Definition, 
Measurements, and Classification section, 
ACR measurement in first morning urine 
is a more reliable indicator of albumin 
excretion, since it correlates better with 
the 24-hour albumin excretion rate (AER) 
than the ACR measured in random spot 
urine. This suggests that ACR measure-
ments based on single random spot urine 
specimens—the standard measurement 
in the NHANES—likely overestimate the 
frequency of elevated ACR in the general 
population (210,211,212).

Because of the high intraindividual 
variation of ACR, both NKF and ADA 
guidelines (8,9,19) recommend confirma-
tion of elevated albuminuria in a repeat 
measurement—either first morning void 
or random urine sample. The prevalence 
of persistent albuminuria, defined as 
elevated ACR in two consecutive random 
urine measurements within 2 weeks, was 
15.9% in adults with diabetes (defined 
by A1c ≥6.5% [≥48 mmol/mol] or use 
of glucose-lowering medicines) in the 
NHANES 2009–2014, lower than the 
20.8% prevalence in the NHANES III 
(1988–1994) (age, sex, and race/ethnicity 
adjusted prevalence ratio 0.76, 95% CI 
0.65–0.89) (213). This overall change was 
due to lower albuminuria prevalence in 
adults age <65 years and non-Hispanic 
whites over time. By contrast, the prev-
alence of low eGFR increased during the 
same time in the overall population with 
diabetes. Trends in persistent albuminuria 
and eGFR <60 mL/min/1.73 m2 in the 
general U.S. population with diabetes are 
shown in Table 22.6 by age group (213). 
The prevalence of low eGFR in the U.S. 
population with diabetes has increased 
over time among non-Hispanic white and 
black adults (Table 22.7) (213).

By design, the NHANES does not differ-
entiate the type of diabetes, and results 
in the adult population with self-reported 
diabetes may largely reflect the experi-
ence of persons with type 2 diabetes. In 
a new analysis of NHANES 1999–2010 
data conducted for Diabetes in America, 
the prevalence of CKD by type of diabetes 
was estimated using a published algorithm 

(214) to define persons with type 1 
diabetes (Table 22.8). Results showed a 
higher prevalence of CKD in those with 
type 2 diabetes than in those with type 1 
diabetes, regardless of sex, and a higher 
prevalence in non-Hispanic blacks than in 
non-Hispanic whites. CKD was also more 
frequent in persons with hypertension or 
CVD, regardless of type of diabetes.

In the Pittsburgh Epidemiology of 
Diabetes Complications (EDC) study, the 
prevalences of both moderate and severe 
albuminuria were higher in the 210 men 
than the 180 women diagnosed with 
type 1 diabetes between 1950 and 1964 
(moderate albuminuria prevalence: 75% 
in men vs. 53.8% in women, p=0.001; 
severe albuminuria prevalence: 53.1% 
in men vs. 32.0% in women, p=0.002) 
(Figure 22.12) (215). In the cohort with 
diabetes onset between 1965 and 
1980 (260 men and 283 women), sex 
differences in some CKD risk factors 
diminished, as did the differences in 
albuminuria prevalence (moderate 
albuminuria: 42.6% in men vs. 41.9% 
in women, p=0.9; severe albuminuria: 
18.1% in men vs. 22.4% in women, p=0.3) 
(Figure 22.12). The prevalence of albumin-
uria in a population-based study of 706 
insulin-treated subjects in Wisconsin with 
diabetes onset at age <30 years, presum-
ably mostly persons with type 1 diabetes, 
is shown in Table 22.9 (216). The overall 
prevalence was 21.2% for moderate 
albuminuria (≥0.03–0.29 g albumin/L) 
and 21.1% for severe albuminuria 
(≥0.30 g albumin/L). In the Finnish 
Diabetic Nephropathy (FinnDiane) study 
(217), moderate albuminuria was present 
in 12% and severe albuminuria in 14% 
of adult clinic-based patients with type 
1 diabetes, lower than the prevalences 
of 23% (31–299 mg albumin/24 hours) 
and 19% (≥300 mg albumin/24 hours) 
found in 876 clinic-based patients in 
Denmark (218). Figure 22.13 shows 
the prevalence of albuminuria in these 
clinic-based patients in Denmark as a 
function of the duration of diabetes. The 
prevalence data reported in the studies 
above are higher than those reported in 
a nationwide cohort of Norwegians with 
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TABLE 22.5. Prevalence of Chronic Kidney Disease in Adults Age ≥20 Years, by Age, Sex, Race/Ethnicity, and Risk Factor Categories, U.S., 
1988–1994, 1999–2004, and 2007–2012

CHARACTERISTICS

ALL CKD EGFR <60 ML/MIN/1.73 M2 ACR ≥30 MG/G

1988–1994 1999–2004 2007–2012 1988–1994 1999–2004 2007–2012 1988–1994 1999–2004 2007–2012

All 12.0 14.0 13.6 4.9 6.2 6.5 8.8 9.8 9.2

Age (years)
20–39 5.1 5.9 5.7 0.1 0.3 0.2 5.0 5.8 5.5
40–59 8.4 9.8 8.9 1.3 2.0 2.3 7.5 8.4 7.2
≥60 32.2 37.5 33.2 19.1 25.1 22.7 18.0 20.1 17.7

Sex
Men 10.2 12.3 12.1 4.1 5.0 5.4 7.4 9.2 8.7
Women 14.2 15.7 15.1 5.6 7.2 7.6 10.2 10.3 9.6

Race/ethnicity
Non-Hispanic white 12.3 14.0 13.9 5.5 7.0 7.6 8.2 8.9 8.4
Non-Hispanic black 14.5 14.9 15.9 4.1 5.0 6.2 12.7 12.4 12.3
Other 10.5 13.5 11.7 2.2 3.4 3.1 9.2 11.7 10.1

Risk factor
Diabetes 43.1 42.0 39.2 15.6 17.0 19.6 36.3 33.3 28.6
Self-reported diabetes 42.7 42.2 40.4 16.4 18.5 21.1 35.9 32.6 29.3
Hypertension 33.3 32.7 31.0 15.3 17.1 17.1 23.4 21.3 19.8
Self-reported hypertension 25.3 27.2 26.0 12.9 15.8 15.2 17.1 16.4 16.2
Cardiovascular disease 25.4 40.0 39.5 14.5 27.3 26.8 16.6 23.0 23.8
Obesity (BMI ≥30 kg/m2) 16.6 16.8 16.6 6.2 6.4 7.3 12.3 12.6 11.5

Data were derived from participants in the National Health and Nutrition Examination Surveys 1988–1994, 1999–2004, and 2007–2012. eGFR and ACR are single-sample esti-
mates; eGFR was calculated using the CKD-EPI equation. Diabetes is defined as A1c >7%, self-reported, or currently taking glucose-lowering medications. Hypertension is defined 
as blood pressure ≥130/≥80 mmHg for those with diabetes or CKD, otherwise blood pressure ≥140/≥90 mmHg or taking medication for hypertension. Conversions for A1c 
values are provided in Diabetes in America Appendix 1 Conversions. A1c, glycosylated hemoglobin; ACR, urinary albumin-to-creatinine ratio; BMI, body mass index; CKD, chronic 
kidney disease; CKD-EPI, Chronic Kidney Disease Epidemiology Collaboration equation; eGFR, estimated glomerular filtration rate.

SOURCE: Reference 1

TABLE 22.6. Prevalence of Albuminuria and Decreased Glomerular Filtration Rate in Adults Age ≥20 Years With Diabetes, by Age and Time 
Period, U.S., 1988–2014

AGE (YEARS), 
TIME PERIOD

ALBUMINURIA DECREASED EGFR

N*

Prevalence (95% CI) P for 
Trend N*

Prevalence (95% CI) P for 
TrendUnadjusted (%) Adjusted Ratio† Unadjusted (%) Adjusted Ratio†

≥20 
  1988–1994 534 20.8 (16.3–25.3) 1 [Reference] 214 9.2 (6.2–12.2) 1 [Reference]
  1999–2004 531 18.9 (15.3–22.4) 0.93 (0.79–1.06) <0.001 273 11.6 (8.5–14.6) 1.33 (1.09–1.63) <0.001
  2005–2008 447 17.9 (14.0–21.9) 0.86 (0.75–1.01) 242 11.8 (8.4–15.1) 1.38 (1.09–1.75)
  2009–2014 645 15.9 (12.7–19.0) 0.76 (0.65–0.89) 450 14.1 (11.3–17.0) 1.61 (1.33–1.95)

20–64 
  1988–1994 256 19.5 (13.5–25.4) 1 [Reference] 40 2.9 (0–5.9) 1 [Reference]
  1999–2004 244 17.6 (12.9–22.3) 0.89 (0.72–1.11) 0.001 43 3.9 (1.3–6.5) 1.45 (0.80–2.61) 0.15
  2005–2008 224 15.7 (10.5–20.8) 0.80 (0.64–0.99) 53 4.3 (1.8–6.9) 1.62 (0.89–2.94)
  2009–2014 327 14.0 (10.1–18.0) 0.70 (0.57–0.87) 95 5.5 (2.9–8.2) 1.95 (1.12–3.39)

≥65
  1988–1994 278 22.1 (15.9–28.4) 1 [Reference] 174 19.3 (13.4–25.3) 1 [Reference]
  1999–2004 287 20.7 (15.9–25.5) 0.94 (0.77–1.15) 0.15 230 24.6 (18.4–30.9) 1.26 (1.04–1.54) <0.001
  2005–2008 223 21.9 (17.0–26.8) 0.96 (0.80–1.16) 189 24.4 (18.0–30.9) 1.28 (0.99–1.64)
  2009–2014 318 19.2 (14.9–23.4) 0.84 (0.68–1.03) 355 28.9 (22.9–34.9) 1.53 (1.27–1.85)

Albuminuria is defined as persistent albumin-to-creatinine ratio ≥30 mg/g; decreased estimated glomerular filtration rate (eGFR) is defined as persistently <60 mL/min/1.73 m2. 
Diabetes is defined by A1c ≥6.5% or use of glucose-lowering medicines. Conversions for A1c values are provided in Diabetes in America Appendix 1 Conversions. A1c, glyco-
sylated hemoglobin; CI, confidence interval; GFR, glomerular filtration rate. 
* Unweighted number of National Health and Nutrition Examination Survey participants with diabetes
† Adjusted for age, sex, and race/ethnicity.

SOURCE: Reference 213
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type 1 diabetes (19% for moderate albu-
minuria, 15–200 mg/min; 7.8% for severe 
albuminuria, >200 mg/min) (219), in an 
observational study from the Swedish 
National Registry (12.2% for moderate 
albuminuria; 7.4% for severe albumin-
uria) (220), or in the type 1 diabetes 
population in Germany (3.3% for moderate 
albuminuria, ACR ≥2.5 mg/mmol; 0.2% for 
severe albuminuria, ACR ≥35 mg/mmol) 
(221). The differences are likely due to the 
shorter duration of diabetes and better 
metabolic control in the latter studies, 
which included observations after the year 
2002.

A cross-sectional, clinic-based study of 
24,151 patients from 33 countries world-
wide with type 2 diabetes, mean diabetes 
duration of 8 years, and without previ-
ously known albuminuria found overall 
prevalences of moderate and severe 
albuminuria of 39% and 10%, respectively 
(222). Compared with whites, who had the 
lowest prevalence of albuminuria, Asian 
and Hispanic patients had nearly twice 
the odds of albuminuria (adjusted odds 
ratios [OR] 1.8, 95% CI 1.59–1.97, and 
OR 1.7, 95% CI 1.47–1.94, respectively). 
African patients were younger and had 
shorter duration of diabetes than other 
racial/ethnic groups, but the odds of 
albuminuria were 1.5-fold higher than 
in whites (95% CI 1.20–1.83), who had 
the lowest A1c levels and the highest 
frequency of antihypertensive, lipid-low-
ering, and anticoagulant or antiplatelet 
usage. Among Pima Indians with type 2 
diabetes (207), 26% had moderate albu-
minuria (ACR 30–299 mg/g) and 21% had 
severe albuminuria (ACR ≥300 mg/g), and 
in the population on the Western Pacific 
island of Nauru (208), 41% had moderate 
albuminuria (ACR 30–299 mg/mL) 
and 31% had severe albuminuria (ACR 
≥300 mg/mL). Figure 22.14 shows the 
prevalence of moderate and severe 
albuminuria in Pima Indians according 
to duration of diabetes (207). Although 
different methods and definitions of 
urinary albumin excretion were employed 
in these studies, other factors must be 
invoked to explain the large differences 
in the prevalence of elevated urinary 
albumin excretion in these different 

TABLE 22.7. Prevalence of Albuminuria and Decreased Glomerular Filtration Rate in Adults 
Age ≥20 Years With Diabetes, by Race/Ethnicity and Time Period, U.S., 1988–2014

RACE/ETHNICITY, 
TIME PERIOD N*

PREVALENCE (95% CI)

Unadjusted (%) Adjusted Ratio† P for Trend

Albuminuria

Non-Hispanic white 
  1988–1994 179 21.2 (14.9–27.5) 1 [Reference] 0.001
  1999–2004 179 17.1 (12.8–21.4) 0.81 (0.65–0.99)
  2005–2008 169 17.4 (12.8–22.1) 0.82 (0.68–1.00)
  2009–2014 204 14.2 (9.9–18.5) 0.67 (0.53–0.85)

Non-Hispanic black 
  1988–1994 153 19.4 (14.0–24.9) 1 [Reference] 0.50
  1999–2004 127 21.1 (15.6–26.6) 1.09 (0.89–1.33)
  2005–2008 131 19.2 (13.7–24.8) 1.00 (0.81–1.22)
  2009–2014 173 18.3 (13.7–22.9) 0.93 (0.78–1.11)

Mexican American
  1988–1994 184 20.4 (14.2–26.6) 1 [Reference] 0.95
  1999–2004 179 20.9 (15.4–26.3) 1.03 (0.85–1.25)
  2005–2008 95 21.0 (14.2–27.8) 1.01 (0.79–1.30)
  2009–2014 131 21.0 (15.1–27.0) 1.00 (0.80–1.24)

Decreased eGFR

Non-Hispanic white 
  1988–1994 102 9.8 (5.5–14.0) 1 [Reference] <0.001
  1999–2004 138 12.9 (8.7–17.1) 1.36 (1.06–1.73)
  2005–2008 123 13.3 (8.1–18.6) 1.42 (1.05–1.92)
  2009–2014 206 16.1 (12.1–20.0) 1.65 (1.32–2.06)

Non-Hispanic black 
  1988–1994 63 8.2 (4.6–11.8) 1 [Reference] <0.001
  1999–2004 63 9.6 (5.3–14.0) 1.18 (0.89–1.56)
  2005–2008 70 11.5 (6.1–17.0) 1.39 (1.01–1.92)
  2009–2014 120 13.0 (9.0–17.1) 1.55 (1.20–2.01)

Mexican American
  1988–1994 43 4.6 (1.5–7.7) 1 [Reference] 0.14
  1999–2004 56 5.3 (2.3–8.3) 1.11 (0.66–1.86)
  2005–2008 31 5.8 (1.8–9.8) 1.21 (0.67–2.21)
  2009–2014 50 7.2 (3.0–11.4) 1.42 (0.88–2.31)

Albuminuria is defined by persistent urine albumin-to-creatinine ratio ≥30 mg/g; decreased estimated glomerular 
filtration rate (eGFR) is defined as persistently <60 mL/min/1.73 m2. For albuminuria, p=0.007 for race/ethnicity x 
time interaction; for eGFR, p=0.99 for race/ethnicity x time interaction. CI, confidence interval; CKD, chronic kidney 
disease.
* Unweighted number of National Health and Nutrition Examination Survey participants with diabetes and CKD
† Adjusted for age, sex, and race/ethnicity.

SOURCE: Reference 213, reproduced with permission, copyright © 2016 American Medical Association. All rights 
reserved.

TABLE 22.8. Crude Prevalence of Chronic Kidney Disease Stages 1–5 in Adults Age ≥20 
Years, by Type of Diabetes, U.S., 1999–2010

CHARACTERISTICS

PERCENT (STANDARD ERROR)

Type 1 Diabetes (N=68) Type 2 Diabetes (N=3,933)

All 27.6 (7.15) 39.4 (0.88)

Age (years)
20–44 13.9 (5.68)2 29.6 (2.73)
45–64 47.0 (13.43) 29.1 (1.38)
≥65 65.3 (29.1)2 54.8 (1.33)

Sex
Men 27.3 (11.46)2 39.1 (1.39)
Women 28.1 (7.42) 39.6 (1.35)

Race/ethnicity
Non-Hispanic white 24.4 (8.56)1 38.7 (1.09)
Non-Hispanic black 47.2 (12.54) 40.7 (1.94)
Mexican American 3 37.7 (1.75)

Table 22.8 continues on the next page.
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groups. Additional contributing factors 
may include racial/ethnic differences, as 
well as differences in duration of diabetes, 
blood pressure and metabolic control, 
diet, and perhaps genetic susceptibility to 
diabetic kidney disease.

INCIDENCE OF ELEVATED 
URINARY ALBUMIN EXCRETION
Moderate albuminuria predicts the devel-
opment of severe albuminuria in persons 
with type 1 (223,224,225,226,227) or 
type 2 diabetes (228,229,230,231). In 
type 1 diabetes, persistent albuminuria 
rarely develops in the first 10 years 
after diagnosis (232,233,234). The rate 
of progression to severe albuminuria is 
highest between 10 and 20 years dura-
tion of diabetes, and subsequently, the 
incidence rate declines (130,219,235). In 
the Diabetes Control and Complications 
Trial (DCCT), the cumulative incidence of 
persistent moderate albuminuria was 14%, 
33%, and 38% at 10, 20, and 30 years 
duration of diabetes, respectively, among 
persons assigned to conventional treat-
ment (mean A1c 9.6% [81 mmol/mol]), 
higher than among those in the intensive 
treatment arm (10%, 21%, 25%, respec-
tively; mean A1c 8.9% [74 mmol/mol]). 
In the 325 participants with incident 
moderate albuminuria who were followed 
for up to 23 years, the 10-year cumulative 
incidence was 28% for severe albu-
minuria, 15% for impaired eGFR (eGFR 
<60 mL/min/1.73 m2 at two consecutive 
study visits), and 4% for ESRD (33). The 
10-year cumulative incidence of regression 
to normoalbuminuria, however, was also 
common, at 40%. Lower levels of A1c, 
blood pressure, low-density lipoprotein 
(LDL) cholesterol, and triglycerides and 
absence of retinopathy were associated 
with reduced risk of kidney disease 
progression.

In type 2 diabetes, the incidence of 
elevated albuminuria in relation to 
diabetes duration is more difficult to 
characterize because of the uncertainty 
in dating the onset of diabetes in most 
studies. No relationship between dura-
tion of type 2 diabetes and the incidence 
of proteinuria was found in the Mayo 
Clinic population in Rochester, Minnesota 

TABLE 22.8. (continued)

CHARACTERISTICS

PERCENT (STANDARD ERROR)

Type 1 Diabetes (N=68) Type 2 Diabetes (N=3,933)

Cardiovascular disease
Yes 57.0 (27.07)2 53.3 (2.05)
No 23.7 (6.07) 34.4 (1.00)

Hypertension
Yes 48.0 (9.87) 44.9 (1.03)
No 3 24.7 (1.60)

Type 1 diabetes includes individuals with self-reported diabetes whose age of diagnosis was <30 years, who currently 
use insulin, and who began insulin therapy within 1 year of diabetes diagnosis. Type 2 diabetes includes individuals 
with self-reported diabetes who are not defined as having type 1 diabetes or those with undiagnosed diabetes 
based on A1c ≥6.5% or fasting plasma glucose ≥126 mg/dL. Conversions for A1c and glucose values are provided in 
Diabetes in America Appendix 1 Conversions. A1c, glycosylated hemoglobin.
1 Relative standard error >30%–40%
2 Relative standard error >40%–50%
3 Estimate is too unreliable to present; ≤1 case or relative standard error >50%.

SOURCE: National Health and Nutrition Examination Surveys 1999–2010

FIGURE 22.13.

FIGURE 22.12. Sex- and Cohort-Specific Prevalence of Moderate and Severe Albuminuria, 
Pittsburgh Epidemiology of Diabetes Complications Study

 








































Moderate albuminuria, albumin excretion rate of 30–300 mg/24 hours; severe albuminuria, albumin excretion rate 
>300 mg/24 hours.

SOURCE: Reference 215

 Prevalence of Elevated Urinary Albumin Excretion, By Duration of Type 1 
Diabetes

 













   














 




Moderate albuminuria is defined as 31–299 mg/24 hours and severe albuminuria as ≥300 mg/24 hours. 

SOURCE: Reference 218, copyright © 1988 BMJ Publishing Group, reprinted with permission
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(236), whereas in Wisconsin (237), a 
relationship between diabetes duration 
and incidence of proteinuria was stronger 
in persons who received insulin than in 
those who did not. In Pima Indians, in 
whom the duration of type 2 diabetes is 
known with greater accuracy because 
of systematic periodic oral glucose 
tolerance testing in the population, the 
age-sex-adjusted incidence of proteinuria, 
defined as urinary protein-to-creatinine 
ratio ≥0.5 g/g, was strongly related to 
duration of diabetes (238).

A secular decline in the incidence 
of diabetic kidney disease has 
been described in type 1 diabetes 
(239,240,241,242,243,244). In the EDC 
study (241), the cumulative incidence 
of diabetic nephropathy, defined as 
persistent AER >200 µg/min in timed 
urine collections, was 37% lower in the 179 
participants diagnosed with diabetes in 
1975–1980 than in the 339 participants 
diagnosed in 1965–1974, after 20 years 
of diabetes. Among those with >25 years 
of diabetes duration, the declining trend 
was not statistically significant (Figure 
22.15). The favorable trend disappeared 
in those with diabetes duration >35 years. 
Nevertheless, significant reductions in 
both mortality and ESRD rates in this 
population suggest a slower progression to 
kidney failure with improved management 
of diabetes complications. Comparable 
data have been reported for persons with 
type 1 diabetes in Sweden (242), where 
the cumulative incidence of persistent 
albuminuria (≥1 positive test by Albustix) 
after 20 years of diabetes decreased from 
28% in persons diagnosed with type 1 
diabetes in 1961–1965 to 6% in those 

diagnosed in 1980–1985. Furthermore, 
none of the 51 persons in whom type 1 
diabetes was diagnosed in 1976–1980 
developed persistent albuminuria during 
12–16 years of follow-up. Figure 22.16 
shows the cumulative incidence of 
persistent albuminuria in these cohorts 
according to the calendar year of diagnosis 
of diabetes. The decline in the cumulative 
incidence coincided with improvement in 
glycemic control compar-able to that in 
the intensively treated group in the DCCT 
study (245). These findings were replicated 
in the Steno Diabetes Center cohort from 
Denmark (243,244). The cumulative inci-
dence of diabetic kidney disease, defined 
as persistent albuminuria, declined 
from 31.1% in those with onset of type 1 
diabetes in 1965–1969 to 13.7% in those 
with onset of diabetes in 1979–1984, the 
most significant decline occurring in the 
most recent cohort (Figure 22.17) (244). 
This change paralleled a significant trend 
for earlier initiation of antihypertensive 

treatment following the onset of diabetes, 
expansion of renin-angiotensin-aldoste-
rone system (RAAS) inhibitor usage, and 
sustained improvement in mean blood 
pressure.

In contrast with type 1 diabetes, no secular 
decline in the incidence of proteinuria 
has been reported in type 2 diabetes. 
The 10-year cumulative incidence of 
persistent proteinuria in the predominantly 
Caucasian population age ≥40 years of 
Rochester, Minnesota, remained 12% in 
those diagnosed with type 2 diabetes 
in 1970–1979 (n=483) and those diag-
nosed in 1980–1989 (n=680) (246). The 
20-year cumulative incidence of proteinuria 
reported in this study, however, was 41%, 
higher than the 25% cumulative incidence 
reported in an earlier Rochester study 
of individuals diagnosed with diabetes in 
1945–1969 (236). These secular differ-
ences may be related in part to differences 
in age distributions and in diabetes 

TABLE 22.9. Prevalence of Moderate Albuminuria and Severe Albuminuria in Men and Women With Type 1 Diabetes and Without Diabetes, 
Wisconsin Epidemiologic Study of Diabetic Retinopathy, 1984–1986

PERCENT

Diabetes No Diabetes

Males (n=365) Females (n=341) Total (n=706) Males (n=111) Females (n=130) Total (n=241)

Normal albuminuria (<0.03 g albumin/L) 53 63 58 92 95 94

Moderate albuminuria (0.03–0.29 g albumin/L) 21 22 21 6 4 5

Severe albuminuria (≥0.30 g protein/L) 26 16 21 2 1 1

Type 1 diabetes is defined as insulin-treated diabetes in subjects diagnosed at age <30 years.

SOURCE: Reference 216, reproduced with permission, copyright © 1992 American Medical Association. All rights reserved.

FIGURE 22.14. Prevalence of Elevated Urinary Albumin Excretion in Pima Indians, By 
Duration of Diabetes, 1982–1988

 











   















Moderate albuminuria is defined as 31–299 mg/24 hours and severe albuminuria as ≥300 mg/24 hours.

SOURCE: Reference 207
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diagnosis criteria between the studies. 
In the Pima Indian longitudinal study, in 
which the population was screened approx-
imately every 2 years using 2-hour oral 
glucose tolerance testing, the incidence of 
proteinuria rose between 1967 and 2002 
in response to the longer average duration 
of diabetes in this population in recent 
years (Table 22.10) (247).

The progression of kidney disease in 
persons with newly diagnosed type 2 
diabetes in the United Kingdom Prospective 
Diabetes Study (UKPDS) is presented in 
Figure 22.18 (248,249). The rate of progres-
sion to the next level of kidney disease 
severity (moderate albuminuria, severe 
albuminuria, or elevated plasma creatinine 
or renal replacement therapy) was 2%–2.8% 
per year; the risk of death increased with 
increasing severity of kidney disease, with 
an annual rate of 1.4% for subjects with no 
nephropathy, 3.0% for those with moderate 
albuminuria, 4.6% for those with severe 
albuminuria, and 19.2% with elevated 
plasma creatinine or renal replacement 
therapy. Individuals with severe albuminuria 
were more likely to die in any year than to 
develop kidney failure. Progression from no 
nephropathy to severe albuminuria or more 
advanced kidney disease was low (0.1%), as 
was progression from moderate albumin-
uria to elevated plasma creatinine or renal 
replacement therapy.

Although moderate albuminuria is asso-
ciated historically with an inexorable 
progression to severe albuminuria and a 
decrease in the GFR of 10–15 mL/min/year, 
leading to ESRD (250,251), a substantial 
proportion of persons with type 1 or type 2 
diabetes and moderate albuminuria spon-
taneously regress to normoalbuminuria. 
This observation suggests that moderate 
albuminuria represents reversible kidney 
injury rather than the onset of an inevitable 
progression to ESRD. In a prospective 
observational study of persons with 
type 1 diabetes and moderate albuminuria, 
only 19% developed severe albuminuria, 
whereas 59% regressed to normal albu-
minuria after 6 years of follow-up (36). 
The incidence of albuminuria reported 
in predominantly white populations with 
type 1 diabetes is lower and the rate of 

FIGURE 22.15. Incidence of Kidney Disease in Persons With Type 1 Diabetes, Pittsburgh 
Epidemiology of Diabetes Complications Study, 1986–2000, and Steno Clinic Population, 
1933–1984

 
























          





Kidney disease is defined as an albumin excretion rate >200 µg/min in at least two of three timed urine collections.

SOURCE: Reference 241, copyright © 2006 American Diabetes Association, reprinted with permission from The 
American Diabetes Association

FIGURE 22.16. Cumulative Incidence of Persistent Albuminuria in Persons With Type 1 
Diabetes Diagnosed Before Age 15 Years, by Duration of Diabetes

 







  























  





Persistent albuminuria is defined as ≥1 positive by Albustix. Subjects are divided into four groups based on calendar 
years in which diabetes was diagnosed.
* p=0.01 for difference with the group with onset of type 1 diabetes in 1961–1965

SOURCE: Reference 242, copyright © 1994 Massachusetts Medical Society, reprinted with permission

FIGURE 22.17. Cumulative Incidence of Diabetic Nephropathy by Period of Onset of Type 1 
Diabetes Diagnosed Before Age 15 Years, by Duration of Diabetes

 











      









































 






SOURCE: Reference 244, copyright © 2003 American Diabetes Association, reprinted with permission from The 
American Diabetes Association
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TABLE 22.10. Incidence of Proteinuria in Three Independent Time Periods Among Pima Indians With Type 2 Diabetes, by Diabetes Duration 
and Proportion of Person-Years Accumulating in Short and Long Duration Categories, 1967–2002

TIME PERIOD

1967–1978 1979–1990 1991–2002

Cases Person-Years Rate* Cases Person-Years Rate* Cases Person-Years Rate*

Diabetes duration (years)
<10 31 2,383.8 13.0 22 1,846.2 11.9 32 2,055.9 15.6
10–15 32 598.6 53.5 36 712.3 50.5 31 620.2 50.0
15–20 17 176.9 96.1 47 493.0 95.3 48 439.6 109.2
≥20 8 78.7 101.6 32 231.5 138.2 30 295.4 101.6

Unadjusted rate 88 3,238.0 27.2 137 3,283.0 41.7 141 3,411.1 41.3

Age-sex-adjusted rate 24.3 35.4 38.9
(95% confidence interval) (18.7–30.0) (28.1–42.8) (31.2–46.5)

Proportion of person-years of follow-up in 
persons with ≥10 years duration of diabetes (%)

                         26                           44                          40

Proteinuria is defined as urinary protein-to-creatinine ratio ≥0.5 g/g.
* Rate is reported as cases per 1,000 person-years at risk.

FIGURE 22.18. Chronic Kidney Disease Progression in Persons With New-Onset Type 2 
Diabetes, United Kingdom Prospective Diabetes Study, 1977–1997

 













































Percentages represent annual rates with 95% confidence intervals.

SOURCE: Reference 248, copyright © 2003 Elsevier, reprinted with permission

SOURCE: Reference 247, copyright © 2006 Elsevier, reprinted with permission

regression higher than those reported in 
African Americans with type 1 diabetes for 
a similar time period (252,253). The 6-year 
cumulative incidence of moderate albumin-
uria (AER 20–200 µg/min) in 473 African 
Americans with type 1 diabetes was 26.0% 
(95% CI 20.9%–31.6%), and of severe albu-
minuria (AER ≥200 µg/min) 16.9% (95% CI 
12.6%–21.8%), with an overall incidence 
of elevated albuminuria of 42.9% (95% CI 
36.9%–50.0%) (Figure 22.19) (252). Among 
the 370 African Americans with ACR <200 
µg/min at baseline, 23.5% (95% CI 19.3%–
28.2%) progressed to severe albuminuria. 
Overall, 33.5% progressed to a worse albu-
minuria category, and 8.5% improved either 
spontaneously or due to treatment with 
angiotensin-converting enzyme (ACE) inhib-
itors or other antihypertensive medicines.

In general, the proportion of persons 
with type 2 diabetes who regress from 
moderate albuminuria to normoalbumin-
uria is 30%–54%, while the frequency 
of progression to overt proteinuria is 
12%–36% (254,255,256). Moderate 
albuminuria of short duration, use 
of RAAS inhibitors, lower A1c (<6.9% 
[<52 mmol/mol]), and systolic blood 
pressure <129 mmHg are independently 
associated with regression. A higher 
likelihood of progression than regression 
of diabetic kidney disease was found in a 
large population-based study of persons 
with type 2 diabetes and hypertension, 
all members of a managed care organi-
zation (257), who had at least two ACR 

measurements during a mean follow-up of 
5 years. At baseline, 57% had normal ACR 
(<3.4 mg/mmol), 31% had moderate albu-
minuria (3.4–33.8 mg/mmol), and 12% 
had severe albuminuria (≥33.9 mg/mmol). 
Among those with normal ACR at baseline, 
46% developed elevated ACR by the end of 
follow-up; of those with moderate albumin-
uria, 20% developed severe albuminuria, 
whereas 21% regressed to normal ACR; 
and among those with severe albuminuria, 
4% developed ESRD and 31% regressed to 
moderate albuminuria. When included in a 
multivariable adjusted model, duration of 
diabetes, antihypertensive treatment, body 

mass index (BMI), A1c, and being African 
American were positively associated with 
progression to elevated ACR, whereas age, 
GFR, systolic blood pressure, and treat-
ment with RAAS inhibitors were positively 
associated with progression to ESRD in 
persons with severe albuminuria. Among 
750 American Indians from Arizona, 
Oklahoma, and North and South Dakota 
age 45–74 years in the Strong Heart Study, 
albuminuria was measured in 1989–1991 
(baseline), 1993–1995 (second examina-
tion), and 1997–1999 (third examination) 
(258). Among those with normal ACR 
at baseline, 67% remained so and 33% 
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developed elevated albuminuria (29% 
moderate albuminuria and 4% severe albu-
minuria) by the second examination. More 
participants with normal albuminuria at the 
second examination remained normoalbu-
minuric (77%), and 23% developed elevated 
albuminuria (19% moderate albuminuria 
and 4% severe albuminuria) by the third 
examination, suggesting a decline in onset 
of kidney disease in the later years. Risk 
factors for onset of elevated albuminuria 
were higher A1c, systolic blood pressure, 
higher baseline ACR, smoking, hypogly-
cemic treatment, and longer diabetes 
duration. Participants with a baseline 
ACR between 10 and 30 mg/g had nearly 
threefold higher risk of elevated ACR over 
a 4-year period (OR 2.7, 95% CI 1.9–3.9) 
than those with baseline ACR <5 mg/g 
(258). The cumulative incidence of elevated 
ACR increased with duration of diabetes 
(p<0.01) and was similar in men and 
women in the three study centers (Figure 
22.20).

DIABETIC KIDNEY DISEASE AS A 
RISK FACTOR FOR ESRD, CARDIO-
VASCULAR DISEASE, AND DEATH
A new analysis of the NHANES 1999–
2004 conducted for Diabetes in America 
showed that elevated albuminuria and 
low GFR are associated with ESRD, fatal 
and nonfatal CVD, and all-cause mortality 
(Table 22.11). For albuminuria, these 
associations are a continuum, starting at 
levels well below the 30 mg/g threshold 
that defines moderate albuminuria 
(259,260,261,262). Among American 
Indians age 45–74 years in the Strong 
Heart Study (259) who were free of CVD 
at baseline, ACR <30 mg/g was a strong 
and independent predictor of all cardiovas-
cular events, including nonfatal and fatal 
CVD, and these associations were similar 
in individuals with or without diabetes. In 
those with diabetes, the adjusted risks 
for all, nonfatal, and fatal CVD events 
increased by 20% (hazard ratio [HR] 1.20, 
95% CI 1.07–1.34), 13% (HR 1.13, 95% CI 
0.99–1.28), and 48% (HR 1.48, 95% CI 
1.17–1.87), respectively, for each doubling 
of ACR within the normal range.

Among persons with diabetes participating 
in the NHANES III, those with the highest 
ACR levels (ACR ≥300 mg/g) and lowest 

eGFR (eGFR 15–59 mL/min/1.73 m2) had 
a 2.7-fold higher risk for cardiovascular 
mortality and a 2.5-fold higher risk for 
all-cause mortality, relative to those with 
normal ACR and eGFR ≥90 mL/min/1.73 
m2 (263). Similar associations were found 
in participants without diabetes; however, 
those with diabetes had greater absolute 
risks for these outcomes. Adjustments for 
diabetes duration and cardiovascular risk 
factors did not change the significance of 
these associations, suggesting that CKD 
is a risk amplifier, with much of the excess 
CVD in diabetes occurring in persons with 
diabetic kidney disease.

Nearly all of the excess mortality associated 
with either type of diabetes is found in 

persons with severe albuminuria 
(35,264,265), primarily from kidney disease 
or CVD in type 1 diabetes (264,266), from 
CVD in whites with type 2 diabetes (267), 
and from CVD or kidney disease in Pima 
Indians with type 2 diabetes (265,268). The 
20-year mortality in 658 persons with type 1 
diabetes in the EDC study is shown in Tables 
22.12 and 22.13 (269). Individuals who 
maintained normal levels of albumin excre-
tion had near-normal survival (standardized 
mortality ratio [SMR] 1.2, 95% CI 0.5–1.9), 
and they were more likely to die from 
non-diabetes-related causes than individuals 
who had elevated albuminuria (AER 
≥20 µg/min) (269). Other studies in persons 
with more than 30 years duration of type 1 

FIGURE 22.19. Six-Year Incidence of Any Proteinuria in African American Men and Women 
With Type 1 Diabetes, by Duration of Diabetes at the Baseline Examination, New Jersey 725 
Study, 1993–1998

 

 






















  

SOURCE: Reference 252, copyright © 2007 American Diabetes Association, reprinted with permission from The 
American Diabetes Association

FIGURE 22.20. Four-Year Cumulative Incidence of Elevated Albuminuria in American 
Indians, by Duration of Diabetes, Sex, and Study Site, Strong Heart Study

  










 


 









ACR, albumin-to-creatinine ratio.

SOURCE: Reference 258



22–20

DIABETES IN AMERICA, 3rd Edition

diabetes show similar associations 
(270,271).

An analysis of secular trends in the inci-
dence of ESRD and mortality in patients 
with type 1 diabetes and severe albumin-
uria from the Joslin Clinic, however, found 
no significant decline in pre-ESRD death 
rate, progression to ESRD, or post-ESRD 
death rate from 1991 to 2004, despite 
both widespread adoption of kidney protec-
tive treatments during the same period and 
significant improvements in blood pressure 
and total serum cholesterol concentration 
(272,273). Sixty-nine percent of either 
pre- or post-ESRD excess mortality was 
attributable to CVD. Moderate and severe 
albuminuria independently predicted 
all-cause mortality in a monotonic fashion 
in the FinnDiane cohort, a cohort repre-
senting 16% of the population with type 1 
diabetes in Finland (217). During 7 years of 
follow-up, the overall death rate in persons 
with moderate albuminuria was nearly 
three times that observed in the general 
Finnish population (adjusted SMR 2.8, 95% 
CI 2.0–4.2), with CVD representing 56% 
of these deaths. Severe albuminuria was 
associated with nine times the death rate 
observed in the age- and sex-matched 
general population (adjusted SMR 9.2, 95% 
CI 8.1–10.5), 45% of these being caused 
by CVD. Indeed, the impact of albuminuria 
level on mortality risk was equivalent to 
that of preexisting macrovascular disease, 
as defined by a history of myocardial 
infarction, unstable angina requiring 
hospitalization, coronary revascularization, 
stroke, carotid surgery, peripheral revas-
cularization, or amputation for critical limb 
ischemia. Other major causes of death 
included infections and cancer. By contrast, 
overall death rates in persons with normal 
ACR were equivalent to those in the general 
population (adjusted SMR 0.8, 95% CI 
0.5–1.1), regardless of diabetes duration, 
indicating that diabetic kidney disease is a 
major driver of excess mortality in type 1 
diabetes. Irrespective of albuminuria level, 
the eGFR was independently associated 
with mortality, but in a U-shaped fashion, 
as shown in Figure 22.21 (217), possibly 
reflecting confounding from other morbid 
conditions unrelated to kidney disease at 
high eGFR levels. The non-linear associa-
tion reflects serum creatinine confounding 

due to such factors as low or reduced 
muscle mass, increased tubular secretion, 
and extrarenal elimination of creatinine. 
Moreover, measurement imprecision is 
greater at lower concentrations of serum 
creatinine, compounding the difficulty of 
interpreting serum creatinine levels in those 
with normal or high-normal GFR (274).

Likewise, in type 2 diabetes, death rates 
due to both overall and cardiovascular 
causes are greatly increased with elevated 

albuminuria (275,276,277,278). Among 
1,993 Pima Indians (55.9% with type 2 
diabetes, the only type of diabetes occur-
ring in this population, even at young 
ages) followed for a median of 11 years, 
death rates from natural causes increased 
with worsening kidney function in both 
nondiabetic and diabetic subjects (268). 
Figure 22.22 shows that death rates in 
nondiabetic and diabetic subjects without 
kidney disease were virtually identical and 
increased similarly with worsening kidney 

TABLE 22.11. Crude All-Cause and Cause-Specific Death Rates in Adults With Diabetes and 
Chronic Kidney Disease, U.S., 1999–2004

CHARACTERISTICS
SAMPLE 

SIZE

DEATH RATE (STANDARD ERROR)*

All Causes Cardiovascular Disease Cancer

All 771 45.1 (4.10) 20.7 (2.95) 6.4 (2.28)1

Age (years)
20–44 62 3 3 3

45–64 228 23.1 (5.88) 8.1 (3.92)2 3

≥65 481 70.8 (6.29) 34.2 (4.57) 10.4 (3.98)1

Sex
Men 410 50.8 (6.29) 25.9 (4.44) 7.0 (2.75)1

Women 361 38.8 (5.27) 14.7 (3.31) 3

Race/ethnicity
Non-Hispanic white 313 55.4 (6.53) 26.0 (4.90) 9.2 (3.53)1

Non-Hispanic black 179 45.2 (7.17) 19.1 (3.83) 3

Mexican American 213 26.0 (5.30) 12.4 (3.57) 3

CKD stages 1–2 403 24.6 (4.21) 9.0 (2.69) 5.9 (2.47)2

CKD stages 3–5 368 74.7 (8.20) 37.4 (6.09) 7.1 (3.38)2

Deaths are ascertained through 2006. Diabetes is defined as self-reported diabetes or undiagnosed diabetes based 
on A1c ≥6.5% or fasting plasma glucose ≥126 mg/dL. Conversions for A1c and glucose values are provided in 
Diabetes in America Appendix 1 Conversions. A1c, glycosylated hemoglobin; CKD, chronic kidney disease.
* Death rate per 1,000 person-years
1 Relative standard error >30%–40%
2 Relative standard error >40%–50%
3 Estimate is too unreliable to present; ≤1 case or relative standard error >50%.

SOURCE: National Health and Nutrition Examination Surveys 1999–2004 and the Linked Mortality File through 2006

TABLE 22.12. Death Rates in Persons With Type 1 Diabetes by Sex, Age, Race, and 
Baseline Kidney Damage Categories, Pittsburgh Epidemiology of Diabetes Complications 
Study, 1986–2008

CHARACTERISTICS N (%)

FOLLOW-UP TIME (YEARS) DEATHS  
N (%)

DEATH RATE/100 
P-YRS (95% CI)Median Total 

All 658 20.1 11,870 152 (23.1) 1.3 (1.1–1.5)

Sex
Men 333 (50.6) 20.0 5,922 85 (26.2) 1.4 (1.1–1.7)
Women 325 (49.4) 20.2 5,948 67 (21.1) 1.1 (0.9–1.4)

Race
White 643 (97.7) 20.1 11,610 147 (22.9) 1.3 (1.1–1.5)
Black 15 (2.3) 20.2 260 5 (33.3) 1.9 (0.2–3.6)

AER
Normal 347 (52.7) 20.4 6,851 24 (7.1) 0.3 (0.2–0.5)
Moderate 140 (21.3) 20.1 2,510 39 (28.1) 1.6 (1.1–2.0)*
Severe 146 (22.2) 19.0 2,275 69 (47.3) 3.0 (2.3–3.8)*†

ESRD 25 (3.8) 8.6 234 20 (80.0) 8.6 (4.8–12.3)*†‡

Albumin excretion rate (AER): <20 μg/min, normal; 20–200 μg/min, moderate; >200 μg/min, severe, in at least two 
of three timed urine collections. CI, confidence interval; ESRD, end-stage renal disease; p-yrs, person-years.
* p<0.001 for rate ratio compared with normal AER
† p<0.001 for rate ratio compared with moderate AER
‡ p<0.001 for rate ratio compared with severe AER

SOURCE: Reference 269, copyright © 2010 Springer, reprinted with permission
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disease in both groups, suggesting that 
kidney disease rather than diabetes per 
se is the major determinant of increased 
mortality among the diabetic population. 
The higher overall mortality in those with 
longer duration of diabetes is due primarily 
to the greater proportion of person-years 
of follow-up falling in the categories of 
worse kidney function (Figure 22.22C). The 
presence of kidney disease was associated 
with excess mortality from diabetic kidney 
disease, CVD, infections, and malignancy 
in the Pima Indians with diabetes and 
from infections in those without diabetes. 
In a cross-sectional analysis including 
American Indians with type 2 diabetes in 
the Strong Heart Study (685 with normal 
albuminuria, 519 with moderate albumin-
uria, and 372 with severe albuminuria), 
participants with severe albuminuria were 
more likely to experience left ventricular 
systolic and diastolic dysfunction than 
those with normal ACR (Figure 22.23) 
(279). Further, among 4,081 American 
Indians, 45% with diabetes, reduced eGFR 
(<90 mL/min/1.73 m2) was associated with 
increased risk of CVD events, including 
coronary heart disease, stroke, and heart 
failure during a median follow-up of 15 

years (280). The associations between 
eGFR measure and CVD events were atten-
uated after adjusting for albuminuria.

FIGURE 22.21. Risk of Death Associated With Estimated Glomerular Filtration Rate in Type 1 Diabetes

 



























     










     



























     














     




Relative hazard computed in persons with type 1 diabetes: (A) without end-stage renal disease, (B) with normal albuminuria, (C) with moderate albuminuria, and (D) with severe 
albuminuria. Albuminuria is defined by a urinary albumin excretion rate <20 µg/min (normal albuminuria), 20–200 µg/min (moderate albuminuria), and >200 µg/min (severe 
albuminuria), in two of three consecutive urine collections. Line indicates adjusted point estimates for cubic regression spline, and shaded areas show 95% confidence intervals. 
GFR, glomerular filtration rate.

SOURCE: Reference 217, copyright © 2009 American Diabetes Association, reprinted with permission from The American Diabetes Association

TABLE 22.13. Mortality Risk and Standardized Mortality Ratios in Participants With Type 1 
Diabetes, Pittsburgh Epidemiology of Diabetes Complications Study, 1986–2008

VARIABLE

HAZARD RATIO (95% CI) ADJUSTED SMR† 
(95% CI)Unadjusted Adjusted*

10-year follow-up

AER
Normal (ref) 1.0 1.0 1.3 (0.2–2.5)
Moderate 6.8 (2.4–19.1) 3.5 (1.1–11.4) 6.6 (3.0–10.1)
Severe 16.3 (6.4–42.0) 5.2 (1.6–16.1) 14.2 (9.2–19.2)

ESRD 68.6 (25.1–187.6) 28.8 (8.7–95.9) 38.9 (19.8–57.9)

20-year follow-up

AER
Normal (ref) 1.0 1.0 2.0 (1.2–2.8)
Moderate 4.5 (2.7–7.5) 2.4 (1.4–4.3) 6.4 (4.4–8.4)
Severe 9.3 (5.8–14.6) 4.0 (2.3–7.0) 12.5 (9.5–15.4)

ESRD 28.9 (15.9–52.6) 9.0 (4.3–18.7) 29.8 (16.8–42.9)

Albumin excretion rate (AER): <20 μg/min, normal; 20–200 μg/min, moderate; >200 μg/min, severe, in at least two 
of three timed urine collections. AER, albumin excretion rate; BP, blood pressure; CI, confidence interval; ESRD, 
end-stage renal disease; ref, reference; SMR, standardized mortality ratio.
* Variables in the model: duration of diabetes, sex, race, waist-to-hip ratio, glycosylated hemoglobin (A1c), systolic 

BP, diastolic BP, BP medication use, high-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, 
white blood cells, estimated glomerular filtration rate, presence of macrovascular disease, presence of prolifera-
tive retinopathy, and ever smoker

† Adjusted for age, race, and sex

SOURCE: Reference 269, copyright © 2010 Springer, reprinted with permission
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Fewer studies have focused on the noncar-
diovascular causes of mortality associated 
with diabetic kidney disease. Persons with 
CKD are three to four times more likely 
to have a poor prognosis after acquiring 
infections than the non-CKD population 
(281,282,283). Persons with diabetes 
have a higher risk of community-acquired 
lower respiratory tract infection, pneu-
monia, and sepsis with declining eGFR 
and increasing ACR, independent of 
age, sex, smoking status, and comorbid 
conditions of diabetes (282). Among hemo-
dialysis patients with diabetes, adjusted 
hospitalization rates for infections are 0.5 
per patient-year (1), similar to the rate of 
hospitalizations for CVD and higher than 
among patients with ESRD due to other 
causes than diabetes. Infections repre-
sented the second leading cause of death 
(15.9%) after CVD (55.8%) among those 
who initiated hemodialysis between 1995 
and 2009 due to diabetes; the leading fatal 
infections on dialysis were septicemia and 
pneumonia (284). Other causes of death in 
this cohort were malignancy (2.8%), with-
drawal from dialysis (5.2%), and unknown 
or unidentified causes (9.6%). The leading 
causes of death were the same for each 
racial/ethnic group (284). Although some 
reports suggest that both kidney disease, 
particularly ESRD, and diabetes increase 
the risk of death from several types of 
cancer (285,286,287), this is not a uniform 
finding (288,289,290,291).

Quantitative information about ACR adds 
significant predictive value to eGFR about 
the risk of death or ESRD, and therefore, 
using both ACR and eGFR is significantly 
better for predicting these outcomes than 
using either measure alone (292,293,294). 
An analysis conducted in 10,640 persons 
with type 2 diabetes enrolled in the Action 
in Diabetes and Vascular Disease: Preterax 
and Diamicron Modified Release 
Controlled Evaluation (ADVANCE) trial 
(293) showed similar contributions of high
ACR and low eGFR to cardiovascular and
kidney events (Figure 22.24). These find-
ings concur with those from a systematic
review of the association between micro-
vascular and macrovascular disease in
type 2 diabetes (295), which showed an
approximately twofold increased risk for

cardiovascular events associated with albu-
minuria or reduced eGFR (Table 22.14) 
(260,295,296,297,298,299,300,301,302,
303,304,305,306,307,308). The strength 
of these associations remained after 
adjustments for multiple confounders, 
suggesting that microvascular and macro-
vascular disease in type 2 diabetes may 
share similar pathophysiologic 

mechanisms. A meta-analysis of 1,024,977 
participants (nearly 13% with diabetes) 
from 30 general population and high-risk 
cardiovascular cohorts and 13 CKD 
cohorts indicated that while the absolute 
risks for all-cause and cardiovascular 
mortality are higher in the presence of 
diabetes, the relative risks of ESRD or 
death by eGFR and ACR are similar with or 

FIGURE 22.22. Trends in Age-Sex-Adjusted Death Rates From Natural Causes and 
Cardiovascular Disease in American Indians With and Without Diabetes, by Severity of 
Kidney Disease

 

   
























































































  































Trends in age- and sex-adjusted death rates from (A) natural causes and (B) cardiovascular disease (CVD). The bars 
represent mortality rates stratified by diabetes and its duration in the four kidney disease categories. The line shows 
overall death rates by diabetes and its duration, indicating a lesser effect of duration than of kidney function on 
mortality. Panel (C) shows the frequency distribution of person-years stratified by diabetes and its duration in the 
four kidney disease categories. The fraction of person-years of follow-up among persons with normal kidney function 
ranged from 96% in subjects without diabetes to 53% in those with 20–30 years of diabetes. Conversely, the fraction 
of person-years among persons on RRT ranged from 0.4% in subjects without diabetes to 12% in those with 20–30 
years of diabetes. Proteinuria was defined by a protein-to-creatinine ratio ≥0.5 g protein/g creatinine, reflecting an 
approximate protein excretion rate of at least 0.5 g/day. High SCr is defined as SCr ≥133 µmol/L (1.5 mg/dL) in men
and ≥124 µmol/L (1.4 mg/dL) in women. RRT, renal replacement therapy; SCr, serum creatinine.
* Insufficient data
† Rate is null.

SOURCE: Reference 268
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without diabetes (309). These findings 
underscore the importance of kidney 
disease per se as a predictor of important 
clinical outcomes, regardless of the under-
lying cause of kidney disease. Additional 
information about mortality and causes of 
death in persons with diabetes can be 
found in Chapter 35 Mortality in Type 1 
Diabetes and Chapter 36 Mortality Trends 
in Type 2 Diabetes.

FIGURE 22.23. Prevalence of Subnormal Left Ventricular Midwall Shortening and Diastolic 
Dysfunction in American Indians With Type 2 Diabetes, by Albuminuria, Strong Heart Study, 
1993–1995

 









 




















Comparison between each group was made using chi-squared statistics with Bonferroni correction. Subnormal 
stress-corrected MWS is defined as stress-corrected MWS <88.7%. Abnormal diastolic function is defined as 
transmitral early diastolic Doppler flow/atrial phase LV filling ratios of <0.6 (compatible with impaired early diastolic 
relaxation) and >1.5 (compatible with restrictive LV filling). ACR, albumin-to-creatinine ratio; LV, left ventricle; MWS, 
midwall shortening.
* p=0.02 relative to ACR <30 mg/g
† p<0.001 relative to ACR <30 mg/g

SOURCE: Reference 279

FIGURE 22.24. Association of (A) Urinary Albumin-to-Creatinine Ratio and (B) Estimated Glomerular Filtration Rate Levels During Follow-Up 
With the Risk for Cardiovascular Events

 









 

































    
















































    


















    


















 































 












Closed and open squares represent hazard ratios (HRs) in subgroups for eGFR <60 and ≥60 mL/min/1.73 m2, UACR <30 and ≥30 mg/g, or SBP <140 and ≥140 mmHg. Hazard 
ratios are adjusted for age; sex; follow-up variables, including eGFR (or UACR); SBP; glycosylated hemoglobin (A1c); low-density lipoprotein (LDL) cholesterol; high-density 
lipoprotein (HDL) cholesterol; triglycerides; body mass index; randomized study treatment; and baseline covariates, including duration of diabetes, history of hypertension, 
history of macrovascular disease, electrocardiogram abnormalities, current smoking, and current drinking. The hazard ratios and 95% confidence intervals for the regression lines 
were corrected with the regression dilution attenuation coefficient of log-transformed UACR (1.98) and log-transformed eGFR (1.96). CI, confidence interval; eGFR, estimated 
glomerular filtration rate; SBP, systolic blood pressure; UACR, urinary albumin-to-creatinine ratio.

SOURCE: Reference 293, copyright © 2009 American Society of Nephrology, reprinted with permission
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TABLE 22.14. Prospective Studies With at Least 200 Type 2 Diabetes Subjects That Evaluated Hard Cardiovascular Endpoints

STUDY/LOCATION,  
YEARS OF DATA COLLECTION (REF.) N NEPHROPATHY MARKER CARDIOVASCULAR ENDPOINT

HAZARD RATIO OR 
RELATIVE RISK (95% CI)

Japan (Japan Diabetes Clinical Data Management 
[JDDM] Study Group), 2004–2005 (296)

3,002 Microalbuminuria – ACR Composite, CVD 1.7 (1.22–2.38)

Hong Kong, NR (297) 4,416 Albuminuria – ACR
Microalbuminuria
Macroalbuminuria

Composite, CVD events
1.68 (1.11–2.55)
2.45 (1.51–3.99)

Hong Kong, 1995–2000 (298) 4,421 Albuminuria – ACR Composite, CVD events 1.85 (1.07–3.18)

Spain, 1994–1998 (299) 423 Microalbuminuria – UAE Composite, CVD events
CVD death

2.30 (1.30–3.80)
2.30 (1.30–3.80)

HOPE study and MICRO HOPE substudy; North 
and South America and Europe, 1994–1999 (260)

3,498 Microalbuminuria – ACR Composite, CVD events 1.84 (1.46–2.31)

Hong Kong, 1995–2005 (300) 7,067 Albuminuria
Microalbuminuria
Macroalbuminuria

Composite, CHD events
1.34 (0.97–1.85)
1.76 (1.19–2.58)

Thailand, 1997–2001 (301) 229 Proteinuria Composite, CHD events 4.41 (1.18–16.45)

Finland, 1982–2001 (302) 720 Proteinuria CVD death 1.60 (1.00–2.60)

Casale Monferrato Study, Italy, 1991–2001 (303) 1,538 Albuminuria – AER
Microalbuminuria
Macroalbuminuria

CVD death
1.20 (0.93–1.57)
1.45 (1.16–1.82)

Italy, NR (304) 683 Microalbuminuria – UAE CVD death 2.01 (1.15–3.68)

Wisconsin Epidemiologic Study of Diabetic 
Retinopathy (WESDR), 1980–1996 (305)

840 Microalbuminuria – UAE CVD death 1.84 (1.42–2.40)

Hong Kong, 1995–2005 (306) 7,209 Albuminuria – ACR Stroke 1.70 (1.45–2.00)

United Kingdom Prospective Diabetes Study 
(UKPDS), 1977–1991 (307)

3,776 Albuminuria – ACR Stroke 2.30 (1.40–4.00)

Israel, 1999–2003 (308) 269 Reduced eGFR Cardiac events 2.20 (1.10–4.46)

Definitions of composite endpoints: Cardiovascular events were defined as MI, angina, revascularization, heart failure, stroke, lower limb amputation (297); CVD death, hospi-
talization for angina, MI, stroke, heart failure or revascularization (298); unstable angina requiring revascularization, fatal or nonfatal MI, fatal or nonfatal stroke, lower leg 
amputation (299); MI, stroke or CVD death (260). CHD events were defined as MI, nonfatal ischemic heart disease, CHD death (306); or MI, angina, sudden death, fatal or 
nonfatal CHF (301). Cardiac events were defined as confirmed MI (on the basis of cardiac enzymes and electrocardiogram evidence), unstable angina and coronary revasculariza-
tion (308). 
Criteria for albuminuria: ACR: ≥30 and <300 mg/g in at least two of three consecutive random samples (296); 3.5–25 mg/mmol (moderate) and ≥25–150 mg/mmol (severe) on 
spot urine (297,298); ≥2 mg/mmol (260); ≥2.5 mg/mmol and <25 mg/mmol in men or ≥3.5 mg/mmol and <25 mg/mmol in women (moderate) and ≥25–150 mg/mmol (severe) 
(300,306); ≥50 mg/L and <300 mg/L relative to mean urine creatinine concentration (11 mmol/L in men and 8 mmol/L in women) (306); UAE: 30–300 mg/24 hours (299,304) 
and ≥0.03 g/L in spot urine (305); AER 2–200 µg/min (moderate) and >200 µg/min (severe) in a timed overnight sample (303). Criteria for proteinuria: ≥1+ at least twice without 
pyuria (301); total urinary protein measured in morning spot urine, ≥0.1 g/L and ≥0.2 g/L (302). Criteria for reduced eGFR: creatinine clearance <60 mL/min/1.73 m2 (298). ACR, 
urinary albumin-to-creatinine ratio; CHD, coronary heart disease; CVD, cardiovascular disease; eGFR, estimated glomerular filtration rate; MI, myocardial infarction; NR, not 
reported; UAE, urinary albumin excretion.

SOURCE: Reference 295, copyright © 2011, reprinted with permission from Elsevier; and references listed within the table
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END-STAGE RENAL DISEASE

PREVALENCE OF DIABETIC ESRD
Kidney failure or ESRD is the most 
advanced stage of CKD, requiring renal 
replacement therapy, such as dialysis 
or kidney transplant, for survival. Since 
1988, all persons receiving treatment for 
ESRD, regardless of age and insurance 
coverage, are included in the United States 
Renal Data System (USRDS) registry (1). 
Consequently, the annual data report 
published by the USRDS contains the 
most complete and reliable information on 
treated ESRD in the United States. Table 
22.15 summarizes the incidence and 
prevalence of treated ESRD according 
to demographic characteristics, primary 

diagnosis, and treatment modality in 
the United States in 2012 (1). In that 
year, 114,813 new cases of dialysis and 
transplant were added to the national 
registry, of which 50,534 (44%) had kidney 
disease attributed to diabetes. Diabetes 
is the single largest cause of ESRD in the 
United States (Figure 22.25) (1). In 1985, 
the adjusted prevalence of treated ESRD 
attributed to diabetes was 103 cases 
per million population, these patients 
accounting for 19% of prevalent treated 
ESRD in the United States; by 2012, the 
prevalence had risen to 731 cases per 
million population, representing 35% of 
prevalent treated ESRD in the United 

States (44% of dialysis patients and 23% 
of kidney transplant patients) (Table 
22.15) (1). An increasing prevalence of 
diabetes and improved CVD survival 
are responsible, in part, for this growth 
(Figure 22.26) (310). About 30% of persons 
with type 1 diabetes and 10%–40% of 
those with type 2 diabetes eventually 
develop kidney failure. Because type 2 is 
the predominant type of diabetes, it also 
far exceeds type 1 diabetes as the cause 
of diabetes-related ESRD. Of the 239,837 
prevalent cases of ESRD with diabetes 
at the end of 2012, type 2 diabetes 
was responsible for 207,145 (86%) 
(Table 22.16) (1).

TABLE 22.15. Summary Statistics on Reported End-Stage Renal Disease Treatment, by Age, Sex, Race/Ethnicity, and Primary Diagnosis, 
U.S., 2012

CHARACTERISTICS

INCIDENCE* DECEMBER 31 POINT PREVALENCE KIDNEY TRANSPLANTS

Count Percent
Adj. 

Rate† Count Percent
Adj. 

Rate† Dialysis‡ Percent Tx‡ Percent
Deceased 

Tx‡
Living 
Donor

ESRD 
Deaths§

All – unadjusted rate║ 358.6 1,968.20 Total 17,330#

All – adjusted 114,813 100 353.2 636,905 100 1,942.90 450,602** 100 186,303 100 11,535 5,617 88,638

Age (years)††
0–19 1,163 1 13.1 7,545 1.2 83.1 2,060 0.5 5,485 2.9 549 350 84
20–44 13,162 11.5 122.2 101,994 16 938 59,045 13.1 42,949 23.1 2,918 1,925 3,929
45–64 45,069 39.3 570.2 283,021 44.4 3,550.10 188,571 41.8 94,450 50.7 5,851 2,549 26,555
65–74 27,933 24.3 1,270.10 140,238 22 6,301.80 106,101 23.5 34,137 18.3 1,928 696 24,563
≥75 27,486 23.9 1,618.40 104,107 16.3 6,261.10 94,825 21 9,282 5 247 76 33,507

Sex
Men 65,842 57.3 446 363,497 57.1 2,396.70 252,526 56 110,971 59.6 6,973 3,483 49,939
Women 48,971 42.7 278 273,312 42.9 1,558.40 198,006 43.9 75,306 40.4 4,520 2,113 38,696

Race/ethnicity
White 76,089 66.3 279.2 383,534 60.2 1,431.80 252,053 55.9 131,481 70.6 6,892 4,450 59,868
Black/African American 31,398 27.3 908 200,797 31.5 5,670.50 164,211 36.4 36,586 19.6 3,547 718 23,868
American Indian 1,273 1.1 411.5 8,154 1.3 2,599.50 6,310 1.4 1,844 1 135 41 1,012
Asian 5,840 5.1 378.9 35,878 5.6 2,271.80 25,230 5.6 10,648 5.7 809 352 3,400
Other 50 0 5,860 0.9 2,515 0.6 3,345 1.8 75 ‡‡ 490
Hispanic 17,024 14.8 501.3 106,308 16.7 2,931.90 79,352 17.6 26,956 14.5 1,956 804 11,433
Non-Hispanic 97,789 85.2 340.5 530,597 83.3 1,857.80 371,250 82.4 159,347 85.5 9,579 4,813 77,205

Primary diagnosis
Diabetes 50,534 44 154.3 239,837 37.7 731 197,079 43.7 42,758 23 3,355 1,081 40,795
Hypertension 32,610 28.4 101.1 159,049 25 489.4 129,092 28.6 29,957 16.1 2,505 833 24,975
Glomerulonephritis 9,115 7.9 28.3 106,012 16.6 325.8 52,841 11.7 53,171 28.5 2,549 1,679 6,828
Cystic kidney disease 2,530 2.2 7.9 29,881 4.7 92.4 11,526 2.6 18,355 9.9 832 620 1,548

Urologic disease 538 0.5 1.6 7,447 1.2 22.9 3,576 0.8 3,871 2.1 133 91 589

Adj, adjusted; ESRD, end-stage renal disease; Tx, transplant; USRDS, United States Renal Data System.
* Incident counts include all known ESRD persons, regardless of any incomplete data on patient characteristics and of U.S. residency status.
† Includes only residents of the 50 states and Washington, D.C. Rates in the first row are unadjusted. All other rates are adjusted for age, race, and/or sex using the estimated 

2011 U.S. resident population as the standard population. All rates are per million population. Rates by age are adjusted for race and sex. Rates by sex are adjusted for 
race and age. Rates by race are adjusted for age and sex. Rates by disease group and total adjusted rates are adjusted for age, sex, and race. Adjusted rates do not include 
persons with other or unknown race.

‡ Persons are classified as receiving dialysis or having a functioning transplant. Those whose treatment modality on December 31 is unknown are assumed to be receiving 
dialysis. Includes all Medicare and non-Medicare ESRD persons, as well as persons in the U.S. territories and foreign countries.

§ Deaths are not counted for persons whose age is unknown.
║ Unadjusted total rates include all ESRD persons in the 50 states and Washington, D.C.
# Total transplants known to the USRDS
** Includes persons whose modality is unknown.
†† Age is computed at the start of therapy for incidence, on December 31 for point prevalence, at the time of transplant for transplants, and on the date of death for death.
‡‡ Values for cells with 10 or fewer persons are suppressed.

SOURCE: Reference 1
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FIGURE 22.25. Trends in Incident ESRD Cases and ESRD Incidence Rate, by Primary Diagnosis of ESRD, 1980–2012

 

















      


























 











      



















ESRD, end-stage renal disease.
* Adjusted for age, sex, and race. Standardized to the 2011 U.S. population.

SOURCE: Reference 1

FIGURE 22.26. Incident ESRD Cases (Line), and Increase in ESRD Attributable to Increased Prevalence of Diabetes, Improved Survival 
Following Myocardial Infarction and Stroke, and U.S. Population Growth in 1991 (Bars)

 





































































































 



ESRD, end-stage renal disease.

SOURCE: Reference 310, copyright © 2003 American Society of Nephrology, reprinted with permission

TABLE 22.16. Prevalence of Reported End-Stage Renal Disease, by Primary Diagnosis, Sex, and Race/Ethnicity, U.S., 2008–2012

PRIMARY DISEASE GROUP
TOTAL 

PERSONS
INCIDENCE 

(%)
MEDIAN AGE 

(YEARS)

PERCENT

Male White Black/Af Am Am Indian Asian Hispanic

All ESRD (reference) 636,905 100 60 57.1 60.2 31.5 1.3 5.6 16.7

Diabetes 239,837 39.3 63 55.8 60.8 30.6 2.1 5.9 22

Diabetes with renal manifestations, type 2 207,145 33.9 64 55.6 58.8 31.8 2.3 6.4 23.3

Diabetes with renal manifestations, type 1 32,692 5.4 51 56.7 73 22.5 1 2.7 13.6

Glomerulonephritis 85,844 14.1 53 60.8 63.8 25.3 1.2 8 15.6

Secondary GN/vasculitis 20,059 3.3 48 29.5 59.8 32.5 1 5.5 17.6

Interstitial nephritis/pyelonephritis 22,562 3.7 59 54.5 80.5 13.3 0.7 4.4 10.9

Hypertensive/large vessel disease 159,049 26 63 59.8 46.7 46.9 0.5 5.1 12.6

Cystic/hereditary/congenital diseases 44,042 7.2 54 58.1 82.4 12.8 0.7 3 12.2

Neoplasms/tumors 5,856 1 67 62.8 76.9 19.7 0.7 2.3 9.9

Complications of transplanted organ 3,464 0.6 56 60.9 77.7 16.9 0.6 4.6 14.5

Data include persons alive on December 31, 2012. Af Am, African American; Am Indian, American Indian; ESRD, end-stage renal disease; GN, glomerulonephritis.

SOURCE: Reference 1
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INCIDENCE OF DIABETIC ESRD
In 1985, the adjusted incidence of treated 
ESRD attributable to diabetes was 45 cases 
per million population. The rate increased 
to 170 per million by 2005 and leveled off 
thereafter (Table 22.17) (1). The increasing 
prevalence of diabetes and more inclusive 
criteria for initiating renal replacement 
therapy contributed to higher incidence 
rates of diabetes-related ESRD over time. 
Trends in the incidence of treated ESRD 
due to diabetes differ broadly by age and 
race/ethnicity. In whites, the sex-adjusted 
incidence rate of ESRD declined between 
2000 and 2010 by 17%, 1%, and 3.6% in 
those ages 20–29, 30–39, and 60–69 
years, respectively, and increased 29% in 
those age ≥70 years. In African Americans, 
by contrast, the incidence rate of ESRD, 
which is about fourfold higher than in 
whites, declined by 17% in those age 
60–69 years only, and increased by 16%, 
69%, and 10% in those ages 20–29, 30–39, 
and ≥70 years, respectively (Figure 22.27) 
(1). Incident ESRD due to diabetes also 
increased among young American Indians, 
Hispanics, and Asians, while declining in 
the older age groups. Racial differences in 
the incidence of treated ESRD in persons 

with type 2 diabetes are attributable in part 
to differences in the duration of diabetes, 
as American Indians, African Americans, 
and Asians generally develop diabetes at 
earlier average ages than do whites (311, 
312,313,314,315,316,317,318). A shift 
towards a younger age at onset of type 2 
diabetes among some minority popula-
tions may be partly responsible for the 
secular trends in ESRD incidence observed 
in the younger groups, as illustrated by 
the Pima Indians (319,320). Whereas 
the incidence of diabetic ESRD in Pima 
Indians age ≥45 years declined after 1990, 
those age <45 years experienced no such 
decline. The lack of decline in the younger 
Pima Indians was associated with a lower 
percentage of RAAS inhibitor usage than in 
older subjects. Women of childbearing age 
were least likely to receive RAAS inhibitors, 
presumably because of concerns about 
their use in pregnancy. At the national level, 
the incidence of ESRD in persons with 
a primary diagnosis of diabetes remains 
higher in African Americans, Mexican 
Americans, Asians, and American Indians 
than in whites, with the highest rates being 
found in African Americans and American 
Indians.

Epidemiologic data on racial/ethnic differ-
ences in the incidence of treated ESRD 
in type 1 diabetes are sparse, in part 
because type 1 diabetes is less frequent, 
particularly among minority populations, 
and in part due to uncertainties related to 
diagnosis; young persons or those who are 
treated with insulin are often misclassified 
as having type 1 diabetes. According to 
USRDS data, of all new cases of treated 
ESRD due to diabetes between 2008 and 
2012, 91% were attributable to type 2 
diabetes (Table 22.18) (1).

SURVIVAL OF PERSONS 
WITH DIABETIC ESRD
Persons with CKD who progress to 
ESRD receive renal replacement therapy, 
including hemodialysis, peritoneal 
dialysis, or kidney transplant, in order 
to survive. Those with a primary diag-
nosis of diabetes have lower survival 
relative to other causes of ESRD (1), 
primarily because of the coexistent 
morbidity associated with diabetes, 
particularly cardiovascular diseases 
(321,322,323,324), which continue 
to advance during the course of renal 
replacement therapy. One- and five-year 

TABLE 22.17. Incidence Rates of Reported End-Stage Renal Disease Due to Diabetes, by Age, Sex, and Race/Ethnicity, 1985–2012

CHARACTERISTICS

INCIDENCE

1985 1990 1995 2000 2005 2010 2012

Crude 35.1 70.5 107.5 143.4 154.9 161.7 156.9

Adjusted 45.0 88.5 133.5 169.8 170.2 164.2 154.3

Age (years)*
0–19 0.1 0.2 0.1 0.1 † 0.1 0.1
20–44 25.1 33.6 36.0 36.9 37.9 43.3 41.2
45–64 104.5 203.9 294.7 340.9 325.5 298.6 286.3
65–74 135.0 321.5 553.4 745.4 719.8 675.8 614.9
≥75 51.7 141.2 293.9 528.3 596.6 619.1 556.1

Sex
Men 46.9 88.9 136.0 184.1 198.6 198.4 187.7
Women 43.0 87.7 131.0 157.5 146.4 135.5 125.8

Race
White 30.3 61.2 90.9 122.3 128.8 127.5 122.1
Black/Af Am 126.7 260.5 400.1 469.8 466.9 428.4 381.9
American Indian 209.2 416.8 572.4 804.1 374.9 307.9 278.6
Asian 77.6 106.2 190.6 220.0 197.3 197.0 189.1

Ethnicity‡
Hispanic 370.0 340.3 336.7 303.8
Non-Hispanic 149.6 153.9 147.7 140.0

Incidence rates are new cases per million population. Rates by age are adjusted for sex and race, rates by sex are adjusted for age and race, and rates by race/ethnicity are 
adjusted for sex and age. Persons of unknown age or sex, or of other or unknown race, are excluded. Af Am, African American; ESRD, end-stage renal disease.
* The age as of the date of ESRD initiation.
† Values for cells with 10 or fewer persons are suppressed.
‡ The Centers for Medicare and Medicaid Services began collecting Hispanic ethnicity data in April 1995.

SOURCE: Reference 1
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FIGURE 22.27. Sex-Adjusted Incident Rates of End-Stage Renal Disease Due to Diabetes, by Age (Years) and Race/Ethnicity, U.S., 1980–2012

     











    















































    











    















































    

    











   















































   

    

Rates are 3-year rolling averages. Data are standardized to the 2011 U.S. population. Af Am, African American; Hisp, Hispanic.

SOURCE: Reference 1
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TABLE 22.18. Incidence of Reported End-Stage Renal Disease, by Primary Diagnosis, Sex, and Race/Ethnicity, U.S., 2008–2012

PRIMARY DISEASE GROUP
TOTAL 

PERSONS
INCIDENCE 

(%)
MEDIAN AGE 

(YEARS)

PERCENT

Male White Black/Af Am Am Indian Asian Hispanic

All ESRD (reference) 570,481 100 64 57 66 28 1.1 4.7 14.5

Diabetes 252,165 45.9 63 55.4 65.7 27.1 1.7 5.3 19.7

  Diabetes with renal manifestations, type 2 230,536 42 64 55.4 65.3 27.3 1.8 5.5 20.2

  Diabetes with renal manifestations, type 1 21,629 3.9 51 55.9 70 25.7 1.1 3.1 15

Glomerulonephritis 35,787 6.5 55 61.5 68.2 23.4 1.1 7.1 13.3

Secondary GN/vasculitis 11,254 2 50 33.9 64 30.4 1 4.4 14.9

Interstitial nephritis/pyelonephritis 16,340 3 65 58.6 82.9 13.1 0.6 3.3 8.4

Hypertensive/large vessel disease 160,891 29.3 69 58.2 59.2 36.2 0.4 4 9.9

Cystic/hereditary/congenital diseases 17,720 3.2 51 57 81.9 14 0.6 3.3 11.9

Neoplasms/tumors 11,160 2 69 64.1 79.4 17.9 0.6 1.9 7.8

Complications of transplanted organ 2,308 0.4 59 65.2 83.5 12.4 0.6 3.2 8.3

Af Am, African American; Am Indian, American Indian; ESRD, end-stage renal disease; GN, glomerulonephritis. 

SOURCE: Reference 1

survival rates in persons with diabetic 
ESRD are presented by age, sex, race/
ethnicity, and primary diagnosis in 
Appendices 22.1 and 22.2 (1). While 
survival on dialysis has slowly improved 
across modalities since the 1990s 
(Figure 22.28), it remains reduced in 
persons with diabetes, half of whom die 
within 3 years of beginning dialysis in the 
United States (Appendix 22.3) (1). Among 
incident ESRD patients with a primary 
diagnosis of type 1 diabetes, first-year 
mortality declined from 13% in 2001–
2005 to 8% in 2006–2010, while the 
proportion of first-year kidney transplants 
remained stable at 8% (1).

African Americans (325,326), Hispanics 
(327), Asians (1), and American Indians 
(1,328) treated for diabetic ESRD have a 
lower risk of death compared with whites 
(Appendix 22.4) (1). Among patients 
on hemodialysis due to diabetic kidney 
disease, the risk of death was 31% lower 
in American Indian, African American, 
or Hispanic patients compared with 
whites and 38% lower in Asians. Among 
American Indians, those with full Indian 
blood ancestry had the lowest adjusted 
risk of death compared with whites (HR 
0.58, 95% CI 0.55–0.61) (Figure 22.29) 
(284). The risk of death increased to 0.95 
(95% CI 0.82–1.11) in those with less than 
one-quarter American Indian ancestry 
(284), suggesting that hereditary factors 
play a role in how patients respond to 
dialysis treatment. Similarly, a study 

conducted in white, African American, and 
Hispanic incident dialysis patients between 
1995 and 2009 showed lowest mortality 

risk in Hispanics, intermediate in African 
Americans, and highest in non-Hispanic 
whites (326). Although patients with 

FIGURE 22.28. Five- and Ten-Year Survival for Incident Persons With Diabetes, by 
End-Stage Renal Disease Treatment Modality, U.S., 1985–2007

   



































     





































    

Adjusted for age, sex, race, and primary diagnosis. Reference cohort is 2011 incident ESRD population. HD and 
CAPD/CCPD survival censored at transplant. CAPD/CCPD, continuous ambulatory peritoneal dialysis/continuous 
cycler peritoneal dialysis; ESRD, end-stage renal disease; HD, hemodialysis; Tx, kidney transplant.

SOURCE: Reference 1
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diabetes were not analyzed separately, 
the survival advantage persisted in older 
patients who were more likely to have 
diabetes as a cause of ESRD. Similar 
to persons with ESRD in general, the 
leading causes of death among adults 
with diabetes who started dialysis in 
1995–2009 were CVD, representing 58% 
of the deaths, and infections, representing 
13% of the deaths; malignancy accounted 
for 3% and withdrawal from dialysis for 5% 
of the deaths. Nonetheless, the adjusted 
annual death rate in patients with diabetes 
as a primary cause of ESRD improved 
steadily since 1985, more so than among 
patients with other causes of ESRD 
(Appendix 22.5) (1).

Kidney transplant recipients with diabetes 
have much better survival than those on 
dialysis, as shown in Figure 22.28 (1). In 
2012, the adjusted death rate in those 
with diabetes-related kidney transplant 
was 45 cases per 1,000 person-years at 
risk, significantly lower than the 186 cases 
per 1,000 person-years among those on 
dialysis, and lower even than the 88 cases 

per 1,000 person-years among those 
on the waiting list for kidney transplant, 
although the transplant candidates are 
presumably similar in other respects to 
those who receive transplants (329,330). 
The lifespan increase after kidney 

transplant was greater among persons 
with ESRD due to diabetes than to other 
causes (331), indicating a significant 
impact of the type of renal replacement 
therapy (transplant versus dialysis) on 
long-term survival.

FIGURE 22.29. Hazard Ratios for Death From Any Cause Among Non-Hispanic American 
Indians With Diabetes at Initiation of Hemodialysis, by Degree of American Indian Ancestry

 




















































Information on American Indian ancestry was obtained from the IHS patient database. The reference group is 
non-Hispanic whites on hemodialysis with a primary diagnosis of diabetes (dashed horizontal line). The capped 
vertical lines represent 95% confidence intervals around the hazard ratio estimates. Hazard ratios are adjusted for 
sex, age, body mass index, estimated glomerular filtration rate, current smoking status, erythropoietin treatment, 
history of hypertension, cardiovascular disease, chronic obstructive pulmonary disease, or malignancy. AI/AN, 
American Indian/Alaska Native; HR, hazard ratio; IHS, Indian Health Service.

SOURCE: Reference 284, copyright © 2014 American Public Health Association, reprinted with permission

RISK FACTORS FOR DIABETIC KIDNEY DISEASE

Numerous risk factors have been identi-
fied for the development and progression 
of diabetic kidney disease. In this section, 
the evidence for some of the more promi-
nent factors is reviewed.

DURATION OF DIABETES
One of the most important risk factors for 
diabetic kidney disease is the duration of 
diabetes, its influence being far greater 
than that of age, sex, or type of diabetes. 
For a given duration of diabetes, the 
cumulative incidences of overt nephrop-
athy and ESRD are similar in type 1 and 
type 2 diabetes (309,312,332,333,334).

SOCIOECONOMIC FACTORS
Socioeconomic factors are often taken 
into consideration when describing asso-
ciations between risk factors and CKD 
in large populations with diabetes. A low 
socioeconomic status is associated with 
increased prevalence of diabetes, hyper-
tension, and CKD (335,336,337). The 
mechanism of this association, however, 

is unclear and often difficult to separate 
from racial/ethnic predisposition or other 
environmental factors. Exposure to an 
adverse prenatal environment, such as 
that caused by poor maternal dietary 
habits, smoking, or poor health, may also 
introduce adverse health traits that persist 
in subsequent generations (338).

HYPERGLYCEMIA
Increased blood glucose concentration is 
a major risk factor for the development 
and progression of moderate albuminuria 
in both types of diabetes (93,232,235,236, 
237,238,332,339,340,341,342,343,344,
345,346,347,348,349,350,351) but may 
have a lesser influence on progression of 
more advanced kidney dysfunction 
(341,352), when hypertension, hypercho-
lesterolemia, and genetic factors play a 
greater role in shaping the outcome 
(36,340). The relative risk of developing 
proteinuria (≥0.30 g/L) after 4 years in 
subjects with type 1 diabetes in Wisconsin 
was three times as high for those with A1c 

in the highest quartile compared with 
those in the lowest quartile (Figure 22.30) 
(233). Similarly, in the EDC study, partici-
pants with type 1 diabetes and A1c >10% 
(>86 mmol/mol) had a 3.6-fold higher risk 
to develop moderate albuminuria than 
those with lower A1c levels. Glycemic 
control was the only predictor of moderate 
albuminuria in both men and women, 
regardless of diabetes duration (340). 
Higher 2-hour postload plasma glucose 
concentration, fasting plasma glucose, 
and A1c in Pima Indians with type 2 
diabetes were associated with a higher 
incidence of elevated ACR after adjust-
ment for age, sex, and duration of 
diabetes (Figure 22.31) (238,342). 
Similarly, among American Indians age 
45–74 years with type 2 diabetes from 
Arizona, Oklahoma, and North and South 
Dakota, higher fasting plasma glucose and 
A1c among those with normal baseline 
ACR and serum creatinine were associ-
ated with increased risk of elevated 
albuminuria (258).
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Hyperglycemia induces hyperfiltration, a 
predictor of progressive kidney disease 
(59,60,61,353,354). In diabetic rats, 
normalization of blood glucose levels 
reverses hyperfiltration (355), and insulin 
infusion reduces the glomerular capil-
lary hydraulic pressure (86). In humans, 
therapeutic interventions that improve 
glycemic control reduce hyperfiltration in 
both type 1 and type 2 diabetes (86,356). 
Persistent hyperglycemia also causes 
dysregulation of a number of effector 
molecules through several biochemical 
pathways in the kidney, including gener-
ation and accumulation of advanced 
glycation endproducts, increased activity 
of the polyol pathway, and activation of 
vasoactive hormones, such as angiotensin 
II and endothelin (357,358,359). Activated 
prosclerotic cytokines, such as trans-
forming growth factor beta (TGF-β) and 
vascular endothelial growth factor (VEGF), 
are important mediators between meta-
bolic and hemodynamic pathways leading 
to pathologic changes of the glomerular 
filtration barrier (Figure 22.32) (357).

Further evidence for the role of hyper-
glycemia in the development of diabetic 
glomerular lesions comes from biopsy 
studies in identical twins discordant for 
type 1 diabetes (360) and from morpho-
logic studies before and after pancreas 
transplantation (361). Glomerular changes, 
including widened glomerular and tubular 
basement membranes and increased 
mesangial fraction, were identified only in 
the diabetic member of twin pairs (Figure 
22.33), suggesting that metabolic status, 
and not genetic predisposition, is respon-
sible for the development of diabetic 
kidney lesions (360). Prolonged normo-
glycemia following pancreas transplant in 
persons with type 1 diabetes and estab-
lished diabetic kidney disease promotes 
virtually complete reversal of glomerular 
and tubular basement membrane thick-
ness and of increases in mesangial and 
interstitial volumes (Figure 22.34) (361).

HYPERTENSION
High blood pressure is related to diabetic 
kidney disease in many cross-sectional 
and longitudinal studies of both type 1 and 
type 2 diabetes. In type 1 diabetes, this 

relationship frequently reflects elevation 
of blood pressure in response to kidney 
disease (362,363,364,365); whereas in 
type 2 diabetes, the onset of hypertension 
generally precedes diabetic kidney disease 
and is often associated with obesity. The 
risk of kidney disease is three times as 
high in persons with type 1 diabetes who 
have a hypertensive parent as in those 
whose parents are not hypertensive 
(Figure 22.35) (366). In addition, those with 
kidney disease have a higher prevalence of 
parental hypertension and a higher mean 
arterial blood pressure during adoles-
cence (367). Increased blood pressure 
during sleep may herald the development 

of moderate albuminuria in adolescents 
and young adults with type 1 diabetes, as 
shown in Figure 22.36 (368). In that study, 
blood pressure was monitored at 2-year 
intervals for up to 9 years or as long as the 
ACR was in the normal range; a ratio of 
≤0.9 between the mean nighttime systolic 
pressure and the mean daytime systolic 
pressure defined the dipping during sleep. 
Moderate albuminuria did not develop 
in those with poor metabolic control in 
whom blood pressure remained normal, 
suggesting that nocturnal elevation in 
blood pressure may identify those with 
type 1 diabetes who are most susceptible 
to progression of kidney disease.

FIGURE 22.30. Four-Year Incidence of Proteinuria in Type 1 Diabetes, By Glycosylated 
Hemoglobin (A1c) Level, Wisconsin, 1980–1986

 











  


























Proteinuria is defined as urinary protein excretion ≥0.30 g/L, determined by reagent strip. Conversions for A1c 
values are provided in Diabetes in America Appendix 1 Conversions.

SOURCE: Reference 233

FIGURE 22.31. Incidence of Proteinuria in Pima Indians With Type 2 Diabetes, by OGTT 
Glucose Level and Diabetes Duration

 






























  

 


Incidence of proteinuria (protein-to-creatinine ratio ≥1.0 g/g) by duration of diabetes in 480 Pima Indians with type 2 
diabetes, according to tertiles of 2-hour plasma glucose concentration after 75 g oral glucose, measured at diagnosis 
of diabetes. Conversions for glucose values are provided in Diabetes in America Appendix 1 Conversions. OGTT, 
2-hour oral glucose tolerance test.

SOURCE: Reference 238, copyright © 1989 Elsevier, reprinted with permission
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In Pima Indian offspring with type 2 
diabetes, the prevalence of proteinuria 
was similar if neither parent or only one 
parent had hypertension (8.9% and 9.4%, 
respectively) but was significantly higher 
if both parents had hypertension (18.8%), 
after adjustment for age, sex, duration 
of diabetes, and 2-hour postload plasma 
glucose concentration in the offspring and 
diabetes in the parents (369). The odds 
for proteinuria in the offspring when both 
parents had hypertension was 2.2 times 
(95% CI 1.2–4.2) that when only one 
parent had hypertension. This relationship 
was present even when controlled for the 
effects of blood pressure and its treat-
ment in the offspring. In addition, higher 
blood pressure before the onset of type 2 
diabetes was related to a higher preva-
lence of elevated albuminuria after the 
onset of diabetes, suggesting that blood 
pressure plays a causal role in the devel-
opment of diabetic kidney disease (Figure 
22.

Many of the abnormalities in plasma lipo-
proteins associated with kidney disease 
are sequelae of kidney dysfunction, yet 
dyslipidemia may also play a role in 
the pathogenesis of glomerular injury 

(388,389,390). Persons with diabetes 
and predialysis CKD typically have signif-37) (370).

Sodium-lithium countertransport activity, a 
genetically influenced trait, is often higher 
in persons with essential hypertension 
and in those whose parents have essential 
hypertension (371,372,373,374). In type 1 
diabetes, elevated rates of countertrans-
port activity are reported in persons with 
moderate albuminuria or proteinuria 
(Figure 22.38) (375,376,377,378), elevated 
GFR (379), and proliferative retinopathy 
(380). These findings suggest that diabetic 
persons with hypertension and with 
elevated sodium-lithium countertransport 
activity are at greater risk for CKD and 
possibly other microvascular complica-
tions, although these findings have not 
been uniformly confirmed (378,381,382). 
Few studies assessed this relationship in 
those with type 2 diabetes; some found an 
association between higher sodium-lithium 
countertransport activity and albumin-
uria (383,384,385), and others did not 
(386,387).

LIPIDS

icant hypertriglyceridemia, elevated LDL, 
and low high-density lipoprotein (HDL) 
cholesterol levels. These abnormalities are 
more pronounced in persons with severe 
albuminuria than those with moderate 
albuminuria (33,391,392,393) but tend to 
subside with progression to uremia and 
dialysis (Table 22.19) (394). Besides quan-
titative changes, lipid particles in people 
with diabetes change qualitatively; LDL 
and HDL particles tending to be smaller 
and denser with advancing CKD (393,395).

In type 1 diabetes, LDL cholesterol 
predicted progression of diabetic kidney 
disease as defined by a doubling of albu-
minuria or a decline in creatinine clearance 
in excess of 3 mL/min/year (396). In that 
study, LDL cholesterol was associated with 
elevated albuminuria after nearly 9 years 
of follow-up; a higher triglyceride content 
of very low-density lipoprotein (VLDL) 
and intermediate-density lipoprotein (IDL) 
particles predicted worsening of moderate 
albuminuria, whereas smaller LDL size 
was associated with declining kidney 
function in persons with severe baseline 
albuminuria. These findings suggest that 
specific lipids or lipid profiles may influ-
ence the onset or progression of diabetic 
kidney disease, although these findings 

have not been consistently observed 
(340,397,398,399).

In type 2 diabetes, prospective studies 
with long follow-up found that LDL 
cholesterol increases the risk for severe 
albuminuria (400) and ESRD (401). In a 
post hoc analysis of 1,061 persons with 
type 2 diabetes included in the Reduction 
of Endpoints in Non-insulin dependent 
diabetes with the Angiotensin II Antagonist 
Losartan (RENAAL) study, the risk of 
ESRD was 32% higher for each 50 mg/dL 
(1.30 mmol/L) increase in LDL cholesterol 
concentration and 67% higher for each 
100 mg/dL (2.59 mmol/L) increase in 
total cholesterol concentration; lowering 
LDL cholesterol concentrations with a 
statin reduced the 1-year risk of ESRD, 
although concurrent treatment with 
losartan, an angiotensin receptor blocker 
(ARB), likely contributed to improving this 
outcome by reducing both lipid levels and 
ACR (401). Elevated plasma triglycerides 
are associated with increased risk for 
both moderate and severe albuminuria 
(400) and with ESRD in type 2 diabetes 
(402). In addition, low concentrations of 
HDL cholesterol predict increased risk of 
albuminuria progression in persons with 
type 2 diabetes and moderate albuminuria 
(403,404). In the UKPDS, each mmol/L 
decline in HDL cholesterol increased 

FIGURE 22.32. Pathways for Potential Interactions Between Glucose Metabolism and 
Hemodynamic Factors Leading to Diabetic Nephropathy

 




























PKC, protein kinase C; TGF-β, transforming growth factor beta; VEGF, vascular endothelial growth factor.

SOURCE: Reference 357, reprinted from The Lancet copyright © 1998, with permission from Elsevier



Kidney Disease in Diabetes

22–33

FIGURE 22.33. Morphometric Measurements in Kidney and Skeletal Muscle From Identical Twins Discordant for Type 1 Diabetes
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(A) Basement membrane width (nm) and (B) fractional volume of the mesangium (%). Values for twins without diabetes (●) are linked to values for their siblings with diabetes 
(○). The numbers next to the lines indicate the twin pair. The shaded areas indicate normal ranges. The normal range for glomerular basement membrane in men (higher normal 
values) overlaps the range in women (lower normal values). Significant differences between siblings with diabetes and their twins without diabetes were found for glomerular basement 
membrane width (p=0.002), tubular basement membrane width (p=0.0012), and fractional volume of the mesangium (p=0.0035), but not muscle capillary basement membrane width 
(p=0.50).

SOURCE: Reference 360, copyright © 1985 Massachusetts Medical Society, reprinted with permission

FIGURE 22.34. Renal Histologic Changes at Baseline and 5 and 10 Years After Pancreas Transplantation

 

























  

  















































































(A) Thickness of the GBM, (B) thickness of TBM, (C) mesangial fractional volume, and (D) mesangial matrix fractional volume are shown before (baseline) and after pancreas 
transplantation. Shaded areas represent the normal ranges obtained in 66 age- and sex-matched normal controls (mean±2 standard deviations). GBM, glomerular basement 
membrane; Mes, mesangium; MM, mesangial matrix; TBM, tubular basement membrane; Vv, fractional volume.

SOURCE: Reference 361, copyright © 2012 Springer, reprinted with permission
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the risk of doubling of serum creatinine 
concentration nearly threefold (HR 2.78, 
95% CI 1.01–7.68) 15 years after the diag-
nosis of type 2 diabetes (400). The Strong 
Heart Study examined the relationship 
between plasma lipoprotein concentra-
tions and the risk of elevated albuminuria 
(ACR ≥30 mg/g) in 671 American Indians 
with type 2 diabetes who were followed 
for a mean of 3.9 years (405). At base-
line, small LDL (particle size <254 Å, 
measured by gradient gel electrophoresis) 
was present in 38% men and 25% women, 
and large LDL (particle size ≥257 Å) was 
present in 50% men and 61% women. A 
low HDL cholesterol concentration was 
associated with elevated ACR in women 
only (OR 0.56, 95% CI 0.32–0.98) after 
adjustment for age, duration of diabetes, 
hypoglycaemic treatment, A1c, study site, 
degree of Indian heritage, mean arterial 
blood pressure, baseline albumin excre-
tion, insulin concentration, BMI, alcohol 
consumption, and physical activity. The 
association between HDL cholesterol 
and increased ACR in women was largely 
explained by a HDL cholesterol concen-
tration <0.9 mmol/L, with little additional 
effect at higher HDL concentrations 
(Figure 22.39) (405). No other lipids were 
found to increase the risk of incident 
albuminuria; high levels of total and VLDL 
triglycerides and small LDL size were posi-
tively, but not significantly, associated with 
abnormal albuminuria. In the absence of 
a standard measure of insulin resistance, 
however, the study could not determine 
whether low HDL cholesterol itself, insulin 
resistance, or other correlated variables 
are most prominently increasing the risk 
of nephropathy (405).

Dyslipidemia might contribute to onset 
and progression of diabetic kidney disease 
through mechanisms similar to those 
responsible for arterial atherogenesis 
(389,406,407). The diabetic environ-
ment facilitates glomerular production 
of triglycerides and cholesterol, which 
appear to cause kidney injury both directly 
by accumulating in the cellular and 
extracellular structures and indirectly by 
stimulating the expression of prosclerotic, 
proliferative, and proinflammatory cyto-
kines (85,390,406). Hypercholesterolemia 

FIGURE 22.35. Mean Blood Pressure in Parents of Persons With Type 1 Diabetes and With 
or Without Proteinuria

 






































Family study of diabetes, including 26 surviving parents of 17 persons with type 1 diabetes and proteinuria and 
parents of 17 matched persons without diabetes or proteinuria. Figure shows mean blood pressure in the parent with 
higher arterial pressure of 17 proteinuric and 17 nonproteinuric diabetic persons; horizontal lines are means. Mean 
blood pressure of parents of proteinuric subjects averaged 11 mmHg (95% confidence interval 1.7–20.3 mmHg) 
higher than in parents of diabetic subjects without proteinuria. Proteinuria is defined as urinary protein >0.15 g/L.

SOURCE: Reference 366, copyright © 1987 BMJ Publishing Group, reprinted with permission

FIGURE 22.36. Nocturnal Systolic Blood Pressure According to Albuminuria and Level of 
Glycosylated Hemoglobin (HbA1c) in Type 1 Diabetes

 











































(A) Nocturnal systolic pressure in 14 subjects who subsequently developed moderate albuminuria (microalbuminuria) 
and in 61 subjects who remained normoalbuminuric. (B) Nocturnal systolic blood pressure according to the mean 
(±standard deviation) HbA1c. The final evaluation was the last evaluation during follow-up in the normoalbuminuria 
group or the last evaluation before the development of moderate albuminuria. Vertical bars indicate standard 
deviations. Microalbuminuria was defined as albumin excretion of 30–299 mg/24 hours, in two consecutive 
measurements less than 6 months apart. Conversions for HbA1c values are provided in Diabetes in America Appendix 
1 Conversions. HbA1c, glycosylated hemoglobin.

SOURCE: Reference 368, copyright © 2002 Massachusetts Medical Society, reprinted with permission
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may impair the kidney’s hemodynamic 
responses and tubular function by 
decreasing nitric oxide production and/
or increasing superoxide activity in the 
kidney (408,409,410,411,412), with 
resulting antidiuretic and antinatriuretic 
effects (413). Although not directly 
affecting GFR, these actions may play a 
role in the development of systemic hyper-
tension associated with diabetes (413). 
Oxidized LDL and free fatty acids can 
cause structural and functional damage 
to podocytes by inducing mitochondrial 
dysfunction and accumulation of reac-
tive oxygen species (414), suggesting a 
direct causal role in the development and 
progression of proteinuria. Experimental 
rodent models of type 1 and type 2 
diabetes indicate that down-regulation 
of glomerular ATP-binding cassette 
transporter (ABCA1) expression can lead 
to excessive cholesterol accumulation 
in podocytes (415,416). Under normal 
conditions, ABCA1 mediates the efflux of 
cholesterol to lipid-poor apolipoproteins 
(primarily Apo A1) to form HDLs. This 
mechanism has also been demonstrated 
in glomerular transcripts from persons 
with diabetic kidney disease when 
compared with living normal controls 
(417,418). Nevertheless, a definitive role 
for dyslipidemia in the development and 
progression of diabetic kidney disease in 
humans remains to be established.

DIETARY PROTEIN
In epidemiologic studies, higher-protein 
diets are associated with development 
of diabetes, as well as with greater risk 
of kidney damage or loss of function, 
especially in individuals with diabetes, 
hypertension, and/or reduced kidney 
function. These risks are mainly confined 
to animal meat intake. Vegetable or dairy 
proteins do not appear to adversely affect 
kidney health (419,420).

In experimental models, excessive 
protein intake causes kidney vasodilation 
and glomerular hyperperfusion with a 
resulting increase in the intraglomerular 
pressure that leads to proteinuria and 
glomerular damage (421,422). In addition, 
long-term high protein intake accelerates 
structural and functional injury in models 

of diabetic kidney disease, whereas 
low-protein diets offer kidney protection 
(423,424,425,426,427,428). Physiologic 
studies in humans confirm the hyperfil-
tration response found in animal studies, 
but only in the presence of chronic hyper-
glycemia (429,430). On the other hand, 
dietary protein of animal origin may be a 
significant source of advanced glycation 
endproducts, particularly when cooked at 
high temperatures or in fat (431). In vitro 
studies indicate that advanced glycation 
endproducts can produce kidney damage 
through a variety of mechanisms even from 
the very early stages of kidney disease, but 

their contribution to disease progression 
is still unclear. Two other studies explored 
the association between CKD and dietary 
acid load, a surrogate for the intake of 
acid-inducing foods (rich in animal proteins) 
versus base-inducing foods (fruits and vege-
tables), quantified as the net acid excretion 
estimated from 24-hour dietary recall (432), 
and between CKD and metabolic acidosis 
(433). The former found that higher dietary 
acid load among 12,293 U.S. adult partic-
ipants in the NHANES 1999–2004 was 
associated with eGFR <60 mL/min/1.73 m2 
or elevated albuminuria in participants 
with hypertension and in those without 

FIGURE 22.37. Prevalence of Elevated Albuminuria in Pima Indians After Diagnosis of 
Type 2 Diabetes, by Blood Pressure Before Onset of Diabetes

 









 































Elevated albuminuria is defined by urinary albumin-to-creatinine ratio ≥100 mg/g. Participants with the highest predi-
abetic blood pressure had the highest prevalence of elevated albuminuria after onset of diabetes.

SOURCE: Reference 370

FIGURE 22.38. Correlation of Sodium-Lithium Countertransport Activity With Nephropathy

 









































Sodium-lithium (Na-Li) countertransport activity measured in 21 persons with type 1 diabetes and normoalbuminuric 
matched controls. Diabetic nephropathy is defined by a urinary protein excretion >0.5 g/24 hours. The horizontal 
bars represent medians.
* p=0.02

SOURCE: Reference 375, copyright © 2004 American Society of Nephrology, reprinted with permission
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hypertension or diabetes. Older age, 
poverty, black race, and male sex, but not 
diabetes, were significantly associated with 
an increasing level of net acid excretion in 
this population. In the latter study (including 
21% persons with diabetes), serum bicar-
bonate level ≤22 mEq/L was associated 
with a 54% higher risk of eGFR decline 
during a median follow-up of 3.4 years after 
adjustment for baseline eGFR and clinical, 
demographic, and socioeconomic patient 
characteristics. Since this study had no 
information on patients’ diet or medication 
during the follow-up, the findings cannot be 
attributed directly to dietary protein intake.

Thus, although a theoretical case can be 
made for the impact of dietary protein 
on the development of diabetic kidney 
disease, no observational data in humans 
unequivocally support such a role.

SMOKING
A cross-sectional analysis of 61,675 
participants in the NKF’s Kidney Early 
Evaluation Program (KEEP), 27.1% of 
whom had CKD, identified smoking along 
with obesity, diabetes, hypertension, and 
CVD as significant factors associated 
with CKD (434). Similarly, in 14,632 
participants in the NHANES 1999–2004, 
15.3% of whom had CKD, current smoking 
increased the odds of CKD by 31% (434).

In a large population-based study, 
maternal smoking during pregnancy 
increased the odds of albuminuria in the 
full-term offspring who later developed 
type 1 diabetes by threefold, inde-
pendent of low birth weight or blood 
pressure levels (435). In young persons 
with type 1 diabetes who smoked, the 
risk of albuminuria was nearly three-
fold higher than in nonsmokers (436). 
Likewise, the frequency of proteinuria 
(>500 mg/24 hours) was twice as high 
in smokers as in nonsmokers of similar 

age, duration of type 1 diabetes, A1c, and 
prevalence of hypertension (437). On the 
other hand, no relationship was observed 
between smoking and GFR decline in 
a longitudinal study of type 1 diabetic 
persons with albuminuria and serial 51Cr-
EDTA GFR measurements over a median 
follow-up of 7 years (Figure 22.40) (438), 
although other smaller studies identified 
an association (439,440,441).

In men with type 2 diabetes, cigarette 
smoking was associated with higher A1c 

FIGURE 22.39. Effect of Serum HDL Cholesterol Concentration on the Incidence of Albuminuria in American Indians With Type 2 Diabetes, 
Strong Heart Study, 1989–1996

 
















































   
















   

Effect of HDL cholesterol concentration on the incidence of albuminuria (ACR ≥30 mg/g) in persons with diabetes and normal urinary albumin at baseline. Results are controlled 
for age, treatment with oral hypoglycemic agents or insulin, glycosylated hemoglobin (A1c), study site, degree of Indian heritage, mean arterial blood pressure, baseline albu-
minuria, and duration of diabetes at follow-up. A generalized additive logistic regression model was used so that non-linearity in the relation could be examined. In each sex, the 
p-value reflects a test for any effect (linear or not) of HDL cholesterol. Conversions for HDL cholesterol values are provided in Diabetes in America Appendix 1 Conversions. ACR, 
albumin-to-creatinine ratio; HDL, high-density lipoprotein.

SOURCE: Reference 405, copyright © 1998 Springer, reprinted with permission

TABLE 22.19. Changes in Lipids, Lipoproteins, Apo A, and Apo B, by Stages of Chronic 
Kidney Disease

LIPID PARAMETER CKD 1–5
NEPHROTIC 
SYNDROME HEMODIALYSIS

PERITONEAL 
DIALYSIS

Total cholesterol ↗ ↑ ↑ ↔↓ ↑
LDL cholesterol ↗ ↑ ↑ ↔↓ ↑
HDL cholesterol ↓ ↓ ↓ ↓
Non-HDL cholesterol ↗ ↑ ↑ ↔↓ ↑

Triglycerides ↗ ↑ ↑ ↑ ↑

Lp(a) ↗ ↑ ↑ ↑ ↑ ↑

Apo A-I ↘ ↗ ↓ ↓

Apo A-IV ↗ ↑↘ ↑ ↑

Apo B ↗ ↑ ↑ ↔↓ ↑
Changes derived from the combined literature. Non-HDL cholesterol includes cholesterol in LDL, VLDL, interme-
diate density lipoprotein, and chylomicron and its remnant. Normal (↔), increased (↑), markedly increased (⇈), and 
decreased (↓) plasma levels compared with non-uremic individuals; increasing (↗) and decreasing (↘) plasma levels 
with decreasing GFR. Apo A, apolipoprotein A; Apo B, apolipoprotein B; CKD, chronic kidney disease; HDL, high-den-
sity lipoprotein; LDL, low-density lipoprotein; Lp, lipoprotein.

SOURCE: Reference 394, copyright © 2007 American Society of Nephrology, reprinted with permission
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and ACR levels in a dose-dependent 
fashion (442), with nearly one-half of 
the heavy smokers having A1c >9% 
(>75 mmol/mol) and ACR ≥30 mg/g. The 
odds of elevated ACR were 2.8–3.2 times 
as high in those smoking more than 15 
pack-years than in nonsmokers, regard-
less of age, blood pressure control, or 
diabetes duration (Figure 22.41). This and 
other studies in type 2 diabetes suggest 
that smoking is associated with kidney 
damage regardless of blood pressure 
control and treatment with RAAS inhibi-
tors (443,444). Smoking also increased 
the risk of moderate or severe albuminuria 
(adjusted OR 1.50, 95% CI 1.21–1.86) 
after 5 years of follow-up in a large 
population-based study of persons with 
type 2 diabetes and no kidney disease 
at baseline from the Swedish National 
Diabetes Registry, although no association 
was found with the rate of kidney function 
decline (445).

Nicotine promotes the proliferation of 
mesangial cells and upregulates specific 
molecules involved in extracellular matrix 
production (446,447). In db/db mice, 
exposure to tobacco smoke for 8 weeks 
induces significant mesangial expansion 
and increases TGF-β and fibronectin 
expression compared with nonexposed 
mice (447). These changes, however, are 
not accompanied by significant changes 
in urinary albumin excretion. Experimental 
prenatal exposure to smoking results 
in neonates whose kidneys are propor-
tionally smaller and exhibit reduced 
thickness of proximal tubule cuboidal 
epithelium, dysmorphia of the proximal 
and distal convoluted tubules, and 
immature glomeruli (448). In addition to 
nicotine, mainstream cigarette combus-
tion produces over 4,000 compounds, 
including reactive oxygen species, carbon 
monoxide, nitric oxide, toxic metals, and 
polycyclic aromatic hydrocarbons, which 
may add to an already increased suscep-
tibility to kidney disease in persons with 
diabetes (449). Although the precise 
mechanisms are unclear, tobacco smoking 
is known to cause vasoconstriction, impair 
platelet function and coagulation, and 
alter blood pressure (450,451). Given 
that persons with diabetes already have 

widespread vascular damage as a conse-
quence of their diabetes (452), smoking 
may serve to accelerate the process.

OBESITY
Obesity is a major risk factor for diabetes, 
hypertension, and CVD, all of which 
increase the risk for kidney disease. 
It increasingly affects young people, 
particularly Hispanics, African Americans, 
and American Indians (453), leading to 
an earlier onset of diabetes and its major 
complications, including kidney disease 
(454). The longitudinal population-based 
study in the Pima Indians showed that 
between 1965 and 2003, BMI increased 
in all age groups, including children. 
During the same time period, the inci-
dence of diabetes increased nearly sixfold 
among those age <15 years, without a 
similar trend in the older ages. These 
findings suggest that the increasing prev-
alence and degree of obesity in the youth 
combined with a nearly fourfold increase 
in the frequency of exposure to diabetes 
in utero have shifted the onset of diabetes 
to younger ages (455). For any diabetes 
duration, participants with youth-onset 
type 2 diabetes had a lower risk of ESRD 
(p=0.007) than those with older-onset 
diabetes. Because of the longer duration 
of diabetes by mid-life, however, the inci-
dence of ESRD was higher between ages 
25 and 54 years in those with youth-onset 
diabetes than in those with adult-onset 

diabetes (p<0.001) (Figure 22.42) (319). 
Given the continued increase in obesity, 
the experience in the Pima Indians may be 
relevant to other populations at high risk 
for diabetes.

Animal and human kidney biopsy studies 
describe obesity-associated adaptive 
increases in GFR and renal plasma flow, 
resulting from both proximal salt reabsorp-
tion and elevated angiotensin II, as well 
as structural changes, such as glomerular 
hypertrophy and focal segmental glomer-
ulosclerosis (456). A retrospective clinical 
and histopathologic study of 6,818 native 
kidney biopsies found diabetes-like lesions 
in 45% of persons with obesity-related 
glomerulopathy (457). Further, the prev-
alence of obesity-related glomerulopathy, 
defined as glomerulomegaly with or 
without focal segmental glomeruloscle-
rosis, increased tenfold over a 15-year 
period (from 0.2% in 1986–1990 to 2.0% 
in 1996–2000) (457). As the authors 
excluded other causes of focal segmental 
glomerulosclerosis, this increase was 
largely attributed to the rising prevalence 
of obesity in the general population. 
Notably, five individuals who lost signif-
icant weight experienced a 50%–75% 
decline in proteinuria, and their kidney 
function remained stable.

Leptin, a peptide hormone regulating 
appetite and body weight, is believed to 

FIGURE 22.40. Impact of Smoking Habit on Kidney Function, Adjusted for Difference in 
Blood Pressure Between Groups, Steno Clinic, 1983–1997

  


















































GFR was measured yearly by the 51Cr-EDTA plasma clearance technique. In 301 persons with type 1 diabetes and 
severe albuminuria followed for a median of 7 years (range 3–14 years), the mean GFR decline was 4.0 mL/min/year, 
with no difference between nonsmokers (n=94), ex-smokers (n=31), and smokers (n=176) (p=24). The adjusted rates 
of GFR decline were 4.1 mL/min/year in nonsmokers, 3.1 mL/min/year in ex-smokers, and 4.1 mL/min/year in the 
smoking group. Severe albuminuria is defined as persistent albuminuria ≥300 mg/24 hours in at least two of three 
consecutive urine collections, presence of diabetic retinopathy, and absence of any clinical or laboratory evidence of 
other kidney or renal tract disease. Error bars represent 95% confidence intervals. GFR, glomerular filtration rate.

SOURCE: Reference 438



22–38

DIABETES IN AMERICA, 3rd Edition

play an essential role in obesity-related 
nephropathy, as suggested by several 
studies (458,459,460). Hyperleptinemia 
associated with excessive adipose tissue 
induces glomerular and tubular dysfunc-
tion through sympathetic nervous system 
activation, profibrotic, proliferative, and 
proinflammatory mechanisms (461). 
Moreover, kidney-specific leptin resistance 
induced by overeating exerts proliferative 
and profibrotic effects that contribute to 
impaired kidney function independently 
of systemic leptin levels and possibly 
induces progressive kidney dysfunction in 
advance of diabetes onset (461).

PERIODONTAL DISEASE
Periodontal disease, which often occurs 
in the absence of diabetes, is also a 
frequent complication of diabetes 
(462), contributing to poor glycemic 
control, low-grade chronic systemic 
inflammation, and increased risk of macro-
vascular and microvascular complications 
(462,463,464). (See also Chapter 31 Oral 
Health and Diabetes.) Because diabetes is 
the leading cause of ESRD, periodontitis is 
frequently present among dialysis patients, 
increasing the risk for cardiovascular death 
(463,465). Severity of periodontitis and 
being edentulous predicted severe albu-
minuria and ESRD in a dose-dependent 
manner among adults with type 2 diabetes 
followed for a median of 9 years (466). 
A study investigating the relationships 
between diabetes, periodontal disease, 

and CKD in the NHANES 1988–1994 
population suggested a bidirectional rela-
tionship between CKD and periodontal 
disease, with periodontitis increasing the 
risk of CKD both directly and mediated by 
hypertension and duration of diabetes, and 
CKD having a direct effect on periodontitis 
(467). Control of periodontal infection in 
diabetic adults improves A1c level (462) 
and reduces the concentration of various 
markers of inflammation, coagulation, and 

adhesion (468,469). Whether such control 
also reduces the onset or progression of 
diabetic kidney disease is not known.

DRUG NEPHROTOXICITY
Between 1999 and 2002, 27% of adults 
in the United States reported habitual 
use of analgesic and nonsteroidal 
anti-inflammatory drugs (NSAIDs), 
including aspirin (470). Cumulative toxicity 
from prolonged exposure to these drugs is 

FIGURE 22.41. Adjusted Odds Ratios of Albuminuria in Males With Type 2 Diabetes, Overall 
and by Age, Blood Pressure, Duration of Diabetes, and Smoking Habit, DMIDS Project, 
2003–2007

 











     















 












The reference group, nonsmokers, is represented by the horizontal line. Study included males with type 2 diabetes in 
Taiwan enrolled in the Diabetes Management through Integrated Delivery System (DMIDS) project. The models are 
adjusted for age, education, history of hypertension, biomarkers (glycosylated hemoglobin [A1c], body mass index, 
total cholesterol, triglycerides, serum creatinine, alanine aminotransferase [ALT]), and treatment with renin-angio-
tensin system inhibitors. 
* p<0.05
† p<0.01
‡ p<0.001

SOURCE: Reference 442

FIGURE 22.42. Effect of Youth-Onset Type 2 Diabetes on Incidence of End-Stage Renal Disease in Pima Indians, by Diabetes Duration and 
Age, 1965–2002

 





































        





Participants were observed from onset of diabetes to outcome or December 2002. Youth-onset type 2 diabetes is defined as onset age <20 years; older-onset type 2 diabetes is 
defined as onset between ages 20 and 55 years.

SOURCE: Left panel: Reference 319, reproduced with permission, copyright © 2006 American Medical Association. All rights reserved. Right panel: Original figure provided by  
M. E. Pavkov and R. G. Nelson.
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a possible cause of chronic kidney disease, 
particularly among the elderly and those 
with diabetes, underlying volume deple-
tion, heart failure, or preexisting kidney 
dysfunction (471,472,473,474,475). 
NSAIDs are cyclooxygenase (COX) 
inhibitors that reduce prostaglandin 
production in the kidneys and elsewhere. 
Because kidney perfusion in persons 
with kidney dysfunction is maintained, 
in part, by the local synthesis of vasodi-
lating prostaglandins (475,476,477,478), 
changes in blood flow due to inhibition 
of prostaglandin synthesis may be 
responsible for ischemia/reperfusion 
injury and worsening kidney dysfunction 
(479,480). Tubulointerstitial changes 
associated with analgesic use may also 
influence the progression of a number of 
kidney diseases (481,482). No data are 
available comparing the nephrotoxicity 
profile of various NSAIDs; indomethacin 
is suggested to cause more hyperkalemia 
(483) and acute kidney injury (484) than 
other NSAIDs, and nephritic syndrome 
is more often associated with feno-
profen (485). Nonetheless, lifetime use 
of nonnarcotic analgesics among 1,697 
women participating in the Nurses’ Health 
Study was not associated with significant 
changes in kidney function, even in those 
who used high doses of these drugs (486). 
Similarly, among 11,032 initially healthy 
men in the Physicians’ Health Study (487), 
moderate analgesic use had an insignifi-
cant effect on serum creatinine levels or 
creatinine clearance over a 14-year period. 
Subgroup analyses that included those 
with a history of diabetes or hypertension 
also found no associations between 
kidney function decline and consumption 
of NSAIDs. On the other hand, annual 
intake of 105–365 acetaminophen pills 
doubled the odds of ESRD in 242 persons 
with diabetes, and a cumulative lifetime 
intake of ≥1,000 tablets nearly tripled the 
odds (Table 22.20) (475). Interestingly, 
the introduction of eGFR reporting in the 
health records of a Scottish population 
resulted in reduced prescribing of NSAIDs 
and a significant improvement in eGFR 
among those who stopped taking NSAIDs, 
suggesting that eGFR reporting may result 
in safer prescribing (488).

A variety of other commonly used or 
prescribed medicines have been associated 
with kidney injuries, including tubulointersti-
tial and glomerular lesions (489). Two main 
mechanisms of interaction with kidney 
structures have been described: direct 
cellular toxicity and immune-mediated 
injury. Direct glomerular cell injury was 
associated with nodular glomerulosclerosis, 
thrombotic microangiopathy, minimal 
change disease, and focal segmental 
glomeruloscrerosis (490). Immune-
mediated drug injuries include lupus-like 
renal lesions, ANCA (anti-neutrophil cyto-
plasmic antibodies)-related pauci-immune 
vasculitis, secondary membranous 
nephropathy, and minimal change disease 
(Table 22.21) (490). These injuries and the 
related clinical parameters are generally 
reversible after withdrawing the offending 
drug. Nonetheless, establishing a causal 
link between drug exposure and the devel-
opment of renal pathology is often difficult, 
due to lack of specific markers, recall bias, 

underlying diseases, heterogeneity of 
symptoms, and physicians’ unfamiliarity 
with the renal effects caused by certain 
drugs.

Contrast-induced nephropathy is one of 
the most commonly reported causes of 
acute kidney failure in hospitalized patients. 
Those with diabetes and GFR <60 mL/
min/1.73 m2 are at particularly increased 
risk for contrast-induced nephropathy, 
especially with use of high-osmolar iodin-
ated contrast media (491).

AUTONOMIC NEUROPATHY
In the United States, between 25% 
and 28% of adults age ≥40 years with 
diabetes have peripheral neuropathy 
(492). Sympathetic neuropathy with 
ensuing alteration of glomerular 
vascular resistance is assumed to 
hasten deterioration of kidney function 
in persons with autonomic neuropathy 
(493). Whether autonomic neuropathy 

TABLE 22.20. Risk of End-Stage Renal Disease in Persons With Diabetes, By Use of 
Acetaminophen, Aspirin, and Nonsteroidal Anti-Inflammatory Drugs

DRUG ODDS RATIO OF ESRD (95% CI)*

Acetaminophen

Number of pills/year
<105 Reference
105–365 2.1 (1.1–3.8)
≥366 1.9 (0.9–3.8)

Number of pills during lifetime
<1,000 Reference
1,000–4,999 2.7 (1.6–4.7)
≥5,000 2.6 (1.2–6.0)

Aspirin

Number of pills/year
<105 Reference
105–365 0.9 (0.5–1.5)
≥366 0.9 (0.5–1.8)

Number of pills during lifetime
<1,000 Reference
1,000–4,999 0.5 (0.3–0.7)
≥5,000 0.7 (0.3–1.4)

Other nonsteroidal anti-inflammatory drugs

Number of pills/year
<105 Reference
105–365 0.9 (0.4–1.8)
≥366 0.7 (0.3–1.8)

Number of pills during lifetime
<1,000 Reference
1,000–4,999 0.6 (0.3–1.4)
≥5,000 5.8 (0.6–56.2)

Type of diabetes was not specified. CI, confidence interval; ESRD, end-stage renal disease.
* Adjusted for age, sex, race, use of other analgesic drugs, and use of drugs containing phenacetin.

SOURCE: Reference 475
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TABLE 22.21. Drug-Induced Glomerular Lesions

GLOMERULAR CELL PATHOLOGY DRUG

Epithelial cells (podocytes) Minimal change disease Interferon α and β, pamidronate, lithium, nonsteroidal anti-inflammatory drugs

Focal segmental glomerulosclerosis Interferon α and γ, pamidronate, lithium, sirolimus, anabolic steroids

Endothelial cells Thrombotic microangiopathy Anti-angiogenesis drugs: mitomycin-C, gemcitabine, interferon, cisplatin/carboplatin, 
estramustine/lomustine, tamoxifen, bleomycin, hydroxyurea, daunorubicin)

Antiplatelet agents: ticlopidine, clopidogrel, prasugrel, dipyridamole, defibrotide, interferons, 
interferon α and β

Immunosuppressive agents: calcineurin inhibitors, anti-CD33 (OKT3)

Antimicrobial agents: valacyclovir, penicillins, rifampin, metronidazole, tetracycline, sulfisoxazole, 
albendazole

Hormones: conjugated estrogens with or without progestins, contraceptives, combination

Nonsteroidal anti-inflammatory drugs: diclofenac, piroxicam, ketorolac

Other: quinine, intravenous oxymorphone (Opana) extended release, simvastatin, iodine, cocaine

Mesangial cells Idiopathic nodular 
glomerulosclerosis (mesangial 
sclerosis)

Heavy tobacco smoking

SOURCE: Reference 490

per se is part of the pathogenic process 
leading to diabetic kidney disease or is 
a reflection of the severity of diabetes 
is unclear (493,494,495). Nonetheless, 
the two complications of diabetes occur 
together frequently. One study reported 
that half of the deaths in those with type 1 
diabetes and autonomic neuropathy were 
attributed to diabetic kidney disease (496). 
More information about diabetic neurop-
athy is provided in Chapter 23 Peripheral 
and Autonomic Neuropathy in Diabetes.

PREGNANCY
Among women with normal kidney function, 
regardless of the presence or absence of 
diabetes, pregnancy is associated with 
a rise in GFR of about 50% that persists 
through the 37th week of gestation 
(274,497) and is accompanied by a 
moderate increase in urinary protein excre-
tion (274,498). Table 22.22 summarizes 
ACR and kidney function characteristic of 
nondiabetic and diabetic pregnancies (499). 
Most diabetic women with nephropathy 
have successful pregnancy outcomes. 
Those with advanced kidney disease, poor 
glycemic control, or hypertension, however, 
are at increased risk of pregnancy compli-
cations and subsequent deterioration in 
kidney function (497).

Although neither pregnancy nor parity 
adversely affect the course of early 
diabetic kidney disease (500), the few 
available studies suggest that women with 

more severe kidney impairment may be 
at greater risk of progression to ESRD. In 
a retrospective review of pregnant women 
with type 1 diabetes, a creatinine clearance 
<90 mL/min or a urinary protein excretion 
>1 g/day during the first 20 weeks of 
gestation was associated with a greater 
decline in kidney function at approximately 
3 years after delivery than in those with 
less severe nephropathy during early 
pregnancy (18.9 mL/min/year compared 
with 6.6 mL/min/year) (501). On average, 
the creatinine clearance declined from 
120±53.1 mL/min (mean±standard devi-
ation) in the first weeks of pregnancy to 
77.9±45.4 mL/min at the 3-year follow-up 
(p=0.01); follow-up proteinuria remained 
unchanged from the initial measurement 
during pregnancy (2.94±4.26 g/24 hours 
vs. 1.74±1.33 g/24 hours, p=0.25) (Table 
22.23) (501). Eight of the 34 women 
who had a follow-up examination main-
tained a proteinuria level >3 g/24 hours 
(501). Mothers with advanced kidney 
disease were more likely to experience 
preeclampsia and have offspring with low 
birth weight. Worsening of preexisting 
diabetic kidney disease was also reported 
among women with type 1 diabetes who 
were followed for up to 26 years (502). 
In this study, morbidity and mortality 
remained higher in women with pregnan-
cies than in those without 10 years after 
their last delivery (502). Preeclampsia is 
more frequent in women with diabetes and 
is associated with 7.7-fold higher odds of 

subsequent CKD than in those with normo-
tensive pregnancies (503).
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TABLE 22.22. Kidney Function During and After Pregnancy, by Presence or Absence of Diabetes

DIABETES

GESTATIONAL DIABETES NO DIABETES
ACR <30 mg/g
Preserved GFR

ACR 30–300 mg/g
Preserved GFR

ACR ≥300 mg/g
Preserved GFR Impaired GFR

Proteinuria Exaggerated 
increase

Nephrotic range 
possible

Nephrotic range 
typical

Increases after 20 weeks, 
normal up to 300 mg/day

Increases after 20 weeks, 
normal up to 300 mg/day

GFR Increases Variable Increases Increases circa 50%

Preeclampsia 15%–20% overall in diabetic women, increasing with worsening nephropathy 7%–10% 2%–5%

Postpartum
proteinuria

None Usually returns 
to baseline

Increased risk of moderate 
albuminuria compared with 
unaffected women

None

Postpartum 
kidney function

Usually normal May be equal to 
prepregnancy decline

Possible deterioration 
or accelerated decline

Usually normal Preeclampsia increases 
risk of ESRD

ACR, albumin-to-creatinine ratio; ESRD, end-stage renal disease; GFR, glomerular filtration rate.

SOURCE: Reference 499, copyright © 2011 Elsevier, reprinted with permission

TABLE 22.23. Serial Creatinine Clearance and 24-Hour Proteinuria Measurements During 
and After Pregnancy in Participants With Type 1 Diabetes, 1988–1994

N

MEAN±STANDARD DEVIATION

Estimated Gestational Age (Weeks)

Follow-up*<20 20–28 28–38

Change in Creatinine Clearance (mL/min)

Initial creatinine clearance
All persons 45 120±53.1 112.2±46.1 105.3±47.1 77.9±45.4
>90 mL/min 34 139±45 130±37 119±44 94±43
60–90 mL/min 7 76±8 80±15 81±21 68±27
<60 mL/min 4 35±12 34±6 33±18 14±8†

Change in Proteinuria (g/24 h)

Initial collection
All persons 45 1.74±1.33 3.60±3.22 4.82±4.7 2.94±4.26
<1 g/24 h 20 0.68±0.23 1.44±1.34 2.05±1.51 0.82±0.59
1–3 g/24 h 19 2.0±0.59 4.81±3.82 6.62±5.40 2.8±4.11
>3 g/24 h 6 4.44±0.78 5.58±1.73 8.93±4.52 6.71±5.90

* Mean follow-up was 2.8±1.8 years. Follow-up information was obtained for 34 of the 45 women.
† Three persons with kidney transplant

SOURCE: Reference 501, copyright © 1996 Wolters Kluwer Health, reprinted with permission
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INTRAUTERINE FACTORS
Clinical studies indicate that exposure 
to a diabetic intrauterine environment 
increases the risk of kidney disease later 
in life, perhaps as a consequence of 
reduced nephron formation during fetal 
development (504,505,506). Individuals 
with reduced nephron endowment are 
also prone to develop hypertension and 
CVD. These conditions may be triggered 
or hastened by exposure to additional 
kidney insults, such as high-salt diet, 
obesity, and diabetes (504,505,507). 
Moreover, impaired nephrogenesis and 
hypertension may be passed to the next 
generation through changes in epigenetic 
gene regulation (508,509,510). Consistent 
quantitative information about this risk 
comes from longitudinal studies in Pima 
Indians. Exposure to diabetes in utero 
among Pima Indians increased nearly 
fourfold over a 30-year period, paralleled 
by a doubling in the prevalence of children 
with diabetes attributable to this exposure 
(511). Intrauterine exposure to diabetes 
was associated with a fourfold increase in 
the age-sex-adjusted incidence of ESRD 
in young adults with type 2 diabetes, 
mediated largely by the younger age at 
onset of diabetes (Figure 22.43) (320). A 
study exploring the impact of intrauterine 
exposure to diabetes compared renal 
vascular resistance in 19 adult nondiabetic 
offspring of type 1 diabetic mothers with 
18 offspring of type 1 diabetic fathers 
as control subjects (512). At baseline, 
exposed and control subjects had similar 
age (median 24 and 25 years, respec-
tively), BMI, age at delivery, glucose 

concentrations, blood pressure, kidney 
size, and 51Cr-EDTA-measured GFR. Kidney 
vasodilatation induced with amino acid 
infusion was associated with significantly 
less increase in GFR and effective renal 
plasma flow and less decline in mean 
arterial pressure in offspring of type 1 
diabetic mothers, suggesting a reduced 
kidney functional reserve possibly due to 
low nephron number and compensatory 
permanent single nephron hyperfiltra-
tion. A proposed explanation for these 
observations is that exposure to a diabetic 
intrauterine environment causes differ-
ential apoptosis during nephrogenesis 
via increased intrarenal renin-angiotensin 
system activation and nuclear factor 
(NF)-kappaB signaling (513,514).

A critical shortage of maternal fuels during 
pregnancy may manifest as intrauterine 
growth retardation, defined as birth 
weight below the 10th percentile for gesta-
tional age. Low birth weight is frequent 
in minority populations, in populations 
undergoing rapid transition from traditional 
to modern lifestyle, and in those with 
low socioeconomic status, as well as in 
pregnancies associated with inadequate 
maternal weight gain, poor antenatal care, 
maternal hypertension, or smoking (515). In 
12,364 adults with a history of diabetes or 
hypertension screened by NKF’s KEEP, 15% 
of whom reported birth weight <2,500 g, a 
U-shaped relationship was found between 
birth weight and CKD among men (516). 
The adjusted odds of developing CKD later 
in life was 1.6-fold higher among those with 
a birth weight <2,500 g and 1.4-fold higher 

among those with a birth weight >4,500 g 
compared with men of normal birth weight. 
No association between birth weight and 
kidney disease was found in women or 
in African American men included in this 
study. Similarly, in a population-based, 
case-control study using 1987–2008 birth 
certificates from Washington state, low 
birth weight (400–2,499 g) was associated 
with twofold higher risk of CKD in the 
offspring (OR 2.41, 95% CI 2.08–2.80) 
compared with normal birth weight 
(2,500–3,999 g); the higher odds persisted 
after adjustment for maternal diabetes, 
BMI, and smoking (OR 2.88, 95% CI 2.28–
3.63) (517). High birth weight (≥4,000 g) 
was also positively associated with CKD 
risk in the unadjusted analysis (OR 1.17, 
95% CI 1.03–1.34) but not after adjustment 
for maternal BMI and smoking (OR 0.97, 
95% CI 0.79–1.21). The same study found 
that children with CKD were more likely to 
be born to overweight or obese mothers 
(OR 1.25, 95% CI 1.10–1.41), regardless of 
maternal diabetes, gestational hyperten-
sion, and smoking (Figure 22.44) (517).

FAMILIAL AND GENETIC FACTORS
Familial aggregation of diabetic kidney 
disease and racial/ethnic differences in 
disease susceptibility suggest a genetic 
predisposition to diabetic kidney disease. 
Three initial studies reported familial 
clustering of diabetic kidney disease 
(518,519,520). In one study, nephropathy 
was reported in 83% of the diabetic siblings 
of persons with type 1 diabetes and kidney 
disease, but in only 17% of the diabetic 
siblings of persons with type 1 diabetes 

FIGURE 22.43. Cumulative Incidence of Diabetic End-Stage Renal Disease Among Pima Indians, by Offspring’s Age and Duration of 
Diabetes, According to Exposure to Diabetes in Utero, 1965–2006

 

































     

















   



SOURCE: Reference 320, copyright © 2010 American Diabetes Association, reprinted with permission from The American Diabetes Association
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without kidney disease (Figure 22.45) (518). 
Moreover, 41% of the affected siblings of 
persons with kidney disease had ESRD. 
A similar study in persons with type 1 
diabetes found kidney disease in 33% of 
the diabetic siblings of diabetic persons 
with kidney disease but in only 10% of the 
diabetic siblings of persons without kidney 
disease (519). Familial clustering is also 
found in type 2 diabetes. In two genera-
tions of Pima Indians with type 2 diabetes 
(520), the frequency of proteinuria in 
the diabetic offspring was higher if both 
diabetic parents had proteinuria than if 
neither did, and if one parent had protein-
uria, the prevalence was intermediate 
(Figure 22.46).

A number of candidate genes have been 
identified that may be related to diabetic 
kidney disease. In Pima Indians, a poten-
tial susceptibility locus for ESRD was 
found within the plasmocytoma variant 1 
(PVT1) gene (521), which was confirmed 
in subjects of European descent with 
type 1 diabetes (522). Genome-wide 
association studies of subjects with 
type 1 diabetes in the Genetics of 
Kidneys in Diabetes (GoKinD) study (523) 
found single nucleotide polymorphisms 
(SNPs) in the FERM domain-containing 
protein 3 (FRMD3) gene and near the 
cysteinyl-tRNA synthetase (CARS) gene 
associated with diabetic kidney disease, 
defined by overt proteinuria or ESRD. 
These associations were confirmed in 
the DCCT/Epidemiology of Diabetes 
Interventions and Complications (EDIC) 
prospective study of type 1 diabetes 
(524), and susceptibility loci near CARS 
were common to both types of diabetes 
(525). Engulfment and cell motility 1 
(ELMO1) loci were associated with diabetic 
kidney disease in European (526) and 
Japanese (527) individuals with type 1 
diabetes and in African Americans with 
ESRD due to type 2 diabetes (528). The 
Family Investigation of Nephropathy and 
Diabetes (FIND) study (529) collected DNA 
and cell lines from European American, 
African American, American Indian, and 
Hispanic American families in whom 
type 2 diabetes was the predominant 
cause of kidney disease. For all ethnicities 
combined, the strongest evidence for 
linkage to diabetic kidney disease was on 

the long arm of chromosomes 7, 14, 18, 
and on the short arm of chromosome 10; 
to ACR on the long arm of chromosomes 
2, 7, and 15; and to eGFR on the long arm 
of chromosomes 1, 7, and 8 (530,531).

A meta-analysis assessing the effects 
of all genetic variants associated with 
severe albuminuria or ESRD found 24 
reproducible genetic variants associated 
with diabetic kidney disease (Figure 22.47) 
(532). These genetic variants are involved 
in the renin-angiotensin system, polyol 

pathway, oxidative stress, inflammation, 
angiogenesis, glomerular filtration barrier 
defects, cell growth, differentiation, and 
apoptosis, supporting their roles in the 
pathogenesis of diabetic kidney disease 
(532). Albuminuria and, to a greater 
degree, GFR are heritable (533), but the 
actual genes responsible for diabetic 
kidney disease remain elusive. Although 
these findings are not universal, they do 
suggest that genetic factors may predis-
pose some individuals to a higher risk of 
diabetic kidney disease than others.

FIGURE 22.44. Association Between Birth Weight and Chronic Kidney Disease

 





















The horizontal dashed line represents the reference birth weight (2,500–3,999 g). Birth weight is based on 
Washington state birth records from 1987–2008. Chronic kidney disease definition is based on International 
Classification of Diseases, Ninth Revision, diagnosis and procedure codes (753.0, 753.15, 599.6, 753.2). BMI, body 
mass index.
* Low birth weight (400–2,499 g) data are adjusted for maternal diabetes, BMI, and smoking; high birth weight 

(≥4,000 g) data are adjusted for maternal BMI and smoking.

SOURCE: Reference 517

FIGURE 22.45. Kidney Status of Siblings of Type 1 Diabetes Probands, by Diabetic 
Nephropathy

 









































 

Probands with diabetic nephropathy were persons with kidney transplant for diabetic ESRD; probands without 
diabetic nephropathy were persons with albumin excretion rate <45 mg/24 hours. The siblings of probands who 
were free of diabetic nephropathy (n=12) had less evidence of kidney disease than did siblings of probands who had 
diabetic nephropathy (n=29) (p<0.001). Numbers on top of the bars are percentages. ESRD, end-stage renal disease. 
* Albumin excretion rate ≥45 mg/24 hours.

SOURCE: Reference 518
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FIGURE 22.46. Prevalence of Proteinuria in Offspring, by Number of Parents With 
Proteinuria, Pima Indians

 









 
































Proteinuria is defined as urinary protein excretion ≥1 g protein/24 hours. Data are adjusted for age, systolic blood 
pressure, diabetes duration, and glucose concentration. Prevention of proteinuria in offspring was significantly 
higher if both parents had proteinuria than if neither parent did; prevalence was intermediate if one parent had 
proteinuria. Numbers on top of the bars are percentages.

SOURCE: Reference 520

Odds Ratio (95% CI)

Protective
Effect

Increased
Risk

0.3 1.0 3.2

B 

APOE E2/3/4 (E2) Asian
APOE E2/3/4 (E2) T2D

ACE rs179975 (D) ESRD
ELMO1 rs741301 (G) Asian

AKRB1 rs759853 (T) T1D
AKRB1 rs759853 (T) Eur

ACE rs179975 (D) T2D
ACE rs179975 (D) Asian
ACE rs179975 (D) Prot.
ACE rs179975 (D) T1D

AKRB1 CA repeat (Z+2) Eur
AKRB1 CA repeat (Z+2) T1D
CNDP1 D18S880 (5L) T2D

EPO rs1617640 (T) T1D
HSPG2 rs3767140 (G) Eur/T1D

CCR5 rs1799987 (G) Asian

FIGURE 22.47. Genetic Variants Reproducibly Associated With Diabetic Nephropathy

 




































 

(A) All genetic variants in or near a gene that were reproduced in an independent study and significantly associated with diabetic nephropathy after meta-analysis. (B) All 
genetic variants in or near a gene that were reproduced in an independent study and significantly associated with diabetic nephropathy in a subgroup. CI, confidence interval. 
Parentheses (y-axis labelling) contain the allele used in the comparison. The subgroup in which the genetic variant was reproducibly associated with diabetic nephropathy is shown 
in y-axis label of Panel B as follows: Asian, T2D (type 2 diabetes), ESRD (end-stage renal disease), T1D (type 1 diabetes), Eur (European), Prot. (proteinuria). 

SOURCE: Reference 532, copyright © 2011 Springer, reprinted with permission
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In addition to specific genetic factors, 
the multifaceted cross-talk between 
genes and environmental factors 
can induce tissue-specific epigenetic 
changes, i.e., heritable changes in gene 
expression without alterations in the 
DNA sequence that can lead to aberrant 
gene regulation expressed as pathologic 
phenotype. Epigenetic changes include 
DNA cytosine methylation, histone 
posttranslational modifications in chro-
matin, and noncoding RNAs, all of which 
can modulate diabetes complications 
through alterations in gene expression 
(534). Through epigenetic mechanisms, 
for example, cells acquire metabolic 
memory of prior hyperglycemic exposure 
that appears to mediate the develop-
ment and progression of diabetic kidney 
disease (535,536). Hyperglycemia-
induced epigenetic aberrations alter 
transcription factors involved in the 
expression of genes mediating the 
pathogenesis of diabetic kidney disease 
(Figure 22.48) (534). Several microRNAs 
and certain long noncoding RNAs also 
have regulatory roles in diabetic kidney 
disease, including promoting/modulating 
fibrotic gene expression in renal cells 
by targeting transcription repressors 
(535). Although the mechanisms of 
such cellular memory are not entirely 
elucidated, its presence is supported by 
the regression of morphologic lesions in 
diabetic kidneys after a long period of 
normoglycemia following pancreas trans-
plantation (361). Similarly, the longlasting 
effects of previous strict glycemic 
control observed in persons with type 1 
diabetes in the DCCT or type 2 diabetes 
in the UKPDS could be attributed to 
cellular metabolic memory. Therapeutic 
approaches targeting TGF-β, angiotensin 
II type 1 receptor, or microRNAs can 
block some of the events involved in the 
pathogenesis of diabetic kidney disease, 
suggesting the need for novel therapies.

FIGURE 22.48. Signaling and Epigenetic Networks Involved in the Pathogenesis of Diabetic 
Complications and Metabolic Memory

 




































































Metabolic and hemodynamic disorders associated with diabetes can upregulate growth factors and lipids that trigger 
signaling pathways, transcription factors, and crosstalk with epigenetic networks. These events can induce chro-
matin remodeling and changes in the transcriptional regulation of key genes in cells from target tissues. Persistence 
of epigenetic changes (including histone PTMs, DNAme, and ncRNAs) may lead to metabolic memory, which is 
known to increase the risk for diabetic complications even after normalization of hyperglycemia. AGE, advanced 
glycation endproducts; Ang II, angiotensin II; AT1R, angiotensin II type 1 receptor; CD, cluster of differentiation; 
DNAme, DNA methylation; ECM, extracellular matrix; 1ncRNA, long noncoding RNA; MI, myocardial infarction; 
miRNA, microRNA; NEFA, nonesterified fatty acids; NF-ĸB, nuclear factor-kappaB; oxLDL, oxidized low-density lipo-
protein; PTM, posttranslational modification; RAGE, receptor for AGEs; SR, scavenger; TBR, TGF-β receptor; TGF-β, 
transforming growth factor beta; Zeb1, zinc finger E-box-binding homebox 1.

SOURCE: Reference 534, copyright © 2015 Springer, reprinted with permission
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TREATMENT OF DIABETIC KIDNEY DISEASE

A number of large, well-designed clinical 
trials have examined the effects of treat-
ments on the onset and progression of 
kidney disease in persons with diabetes. 
The results of these trials helped inform 
and refine clinical practice guidelines 
for the management of persons with 
diabetes and kidney disease. This section 
summarizes the current understanding of 
renoprotective treatments in those with 
diabetes.

METABOLIC CONTROL
Epidemiologic studies indicate that hyper-
glycemia plays a fundamental role in the 
development of diabetic kidney disease, 
as reviewed previously in this chapter. A 
number of clinical trials examined the 
effect of metabolic control on the course 
of diabetic kidney disease (244,524,537, 
538,539,540,541,542,543,544,545,546,
547,548,549,550,551,552).

In type 1 diabetes, evidence that intensive 
treatment of hyperglycemia prevents 
elevation of albuminuria or delays its 
progression comes from the combined 
DCCT and its long-term follow-up, the 
EDIC observational study (524,542). In the 

DCCT, 1,441 persons with type 1 diabetes 
were randomly divided into two groups, 
half receiving intensive insulin therapy 
and the other half receiving conventional 
therapy. Participants were followed for a 
mean of 6.5 years (245). Intensive insulin 
therapy reduced the risks of moderate 
albuminuria (≥40 mg/24 hours) and 
severe albuminuria (≥300 mg/24 hours) 
by 39% and 54%, respectively. Figure 
22.49 shows the cumulative incidence of 
moderate and severe albuminuria among 
persons in the DCCT. At the end of the 
randomization period, the two treatment 
groups were followed for 8 more years, 
on average, during the EDIC study to 
determine the long-term effects of inten-
sive treatment on kidney disease (524). 
Despite the fact that the difference in A1c 
levels achieved during the DCCT (7.4% [57 
mmol/mol] in the intensive treatment vs. 
9.1% [76 mmol/mol] in the conventional 
treatment group, p<0.01) disappeared 
promptly during the EDIC study, the bene-
ficial effect of early intensive treatment 
persisted for 8 years after the end of 
randomization, with 57% lower adjusted 
risk for moderate albuminuria and 84% 
lower risk for severe albuminuria in the 

former intensively treated group relative 
to the conventionally treated group (Figure 
22.50) (524). In later analyses, although 
the risk of ESRD did not differ signifi-
cantly between treatment groups during 
22 years of combined follow-up (0.5 
cases/1,000 person-years in the intensive 
treatment and 1.1 cases/1,000 person-
years in the conventional treatment group, 
p=0.10) (542), intensive early metabolic 
control reduced the risk of impaired GFR, 
defined as a sustained eGFR <60 mL/
min/1.73 m2, by 50% (95% CI 18%–69%, 
p=0.0006). Intensive metabolic control 
also reduced CVD outcomes by 42%, with 
a specific 57% decrease in myocardial 
infarction, stroke, or death from CVD—
effects that were partly mediated by the 
reduced incidence of diabetic kidney 
disease (543).

The long-term positive effect of intensive 
glycemic control—the “glycemic 
legacy”—observed in persons with 
type 1 diabetes followed in the DCCT/
EDIC study (543) was confirmed in those 
with type 2 diabetes in the UKPDS who 
were followed for up to 10 years after 
randomization to an intensively treated 

FIGURE 22.49. Cumulative Incidence of Moderately Elevated Albuminuria and Severe Albuminuria in Participants With Type 1 Diabetes, 
Diabetes Control and Complications Trial

 
































            



































Moderate albuminuria is defined as an albumin excretion rate ≥40 mg/24 hours; severe albuminuria is defined as albumin excretion rate ≥300 mg/24 hours. In the primary 
prevention cohort, intensive therapy reduced the adjusted rate of moderate albuminuria by 34% (p=0.04) but did not change the risk of severe albuminuria (p=0.4). In the 
secondary prevention cohort, intensive treatment reduced the risk of moderate albuminuria by 43% (p=0.001) and the risk of severe albuminuria by 56% (p=0.01).

SOURCE: Reference 245, copyright © 1993 Massachusetts Medical Society, reprinted with permission 
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or standard care group (544), suggesting 
that glycemic control is more likely to 
reduce long-term microvascular and 
macrovascular complications when 
introduced early (545,546). The level 
of glycemic control achieved in the 
UKPDS was similar to that achieved in 
the DCCT. Among persons with type 2 
diabetes, a meta-analysis of randomized 
controlled trials (547) exploring the effect 
of even more intensive glycemic control 
on microvascular and macrovascular 
outcomes indicated that more intensive 
glucose lowering was associated with 
a significant reduction in the rate of 
moderate albuminuria only (risk ratio 0.90, 
95% CI 0.85–0.96) but had no effects on 
mortality, kidney failure, or other vascular 
outcomes. Baseline characteristics 
and mean A1c levels achieved during 
standard and intensive glycemic therapy 
in these clinical trials are shown in Table 
22.24 (547,548,549,550,551,552,553). 
The modest gains in intermediate 
outcomes across these studies were 
counterbalanced by a twofold to threefold 
higher risk of severe hypoglycemia that 
required the intervention of another 
person in the intensive treatment arms 
of the Action to Control Cardiovascular 
Risk in Diabetes (ACCORD), ADVANCE, 
and Veterans Affairs Diabetes Trial (VADT) 
trials (Table 22.25) (551,552,553). The 
ACCORD trial, targeting an A1c level 
<6.0% (<42 mmol/mol) in the intensive 
intervention arm, reported an increased 
risk of cardiovascular death for intensive 
versus conventional glycemic control, 
although it remains unclear whether this 
effect was related to more hypoglycemic 
episodes, the use of additional 
hypoglycemic medicines, or to the target 
glycemic level itself. Significant weight 
gain in those receiving intensive treatment 
might also have offset the beneficial 
effects of the lower A1c levels. Together, 
these trials indicate that glycemic control 
is extremely useful up to a point, but 
more aggressive glycemic control may be 
harmful (554).

Persons with advanced kidney disease 
experience reduced gluconeogenesis and 
impaired kidney clearance of insulin and 
certain oral hypoglycemic drugs (555), 
potentially increasing the likelihood of 

FIGURE 22.50. Differences in Glycosylated Hemoglobin (A1c) Level and Prevalence and 
Incidence of Moderate and Severe Albuminuria, by Randomized Treatment Group at the 
End of the Diabetes Complications and Control Trial and Each Year in the Epidemiology of 
Diabetes Interventions and Complications Study

 








      













  



   






































































































































































































































(Panel A) Boxes indicate 25th and 75th percentiles of A1c level; whiskers, 5th and 95th percentiles; heavy horizontal 
lines, medians; thin horizontal lines, means. P values indicate significance of the A1c level between intensive and 
conventional treatment groups. 
(Panel B) Moderate albuminuria is defined as albumin excretion rate ≥28 µg/min, equivalent to 40 mg/24 hours.  
(A) Prevalence at the end of the DCCT and during the EDIC study. The differences between the treatment groups are 
significant at each time point after DCCT closeout (p<0.001). (B) Cumulative incidence of new-onset moderate albu-
minuria during the EDIC study, by treatment group during the DCCT. The cumulative incidence is significantly lower 
in the former intensive treatment group 8 years after the end of randomization (log-rank test p<0.001). 
(Panel C) Severe albuminuria is defined as albumin excretion rate ≥208 µg/min, equivalent to 300 mg/24 hours.  
(A) Prevalence of severe albuminuria at the end of the DCCT and during the EDIC study. The differences between the 
treatment groups are significant at each time point after DCCT close-out (p<0.01). (B) Cumulative incidence of severe 
albuminuria in the EDIC study by former treatment groups. The difference in cumulative incidences is significant by 
the log-rank test (p<0.001). 
Conversions for A1c values are provided in Diabetes in America Appendix 1 Conversions. A1c, glycosylated 
hemoglobin; DCCT, Diabetes Control and Complications Trial; EDIC, Epidemiology of Diabetes Interventions and 
Complications study. 

SOURCE: Reference 524, reproduced with permission, copyright © 2003 American Medical Association. All rights 
reserved. 
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severe hypoglycemia, particularly when 
associated with inadequate food intake. 
Furthermore, because A1c may under-
estimate the level of glycemia in uremic 
patients, due to the shortened lifespan 
of red blood cells and treatment with 
erythropoietin, establishing an optimal 
target A1c in uremic patients remains 
challenging (556,557). Persons with GFR 
<60 mL/min/1.73 m2 or on dialysis often 
have higher glycemic levels than expected 
for a given A1c, albeit with a wide vari-
ation in the glucose/A1c relationship 
(558,559,560,561,562,563). The Dialysis 
Outcomes and Practice Patterns Study 
(DOPPS) (564) found a U-shaped associa-
tion between A1c and all-cause mortality 
in hemodialysis patients with type 1 or 
type 2 diabetes. The lowest death rates 

were associated with A1c levels 7%–7.9% 
(53–63 mmol/mol), comparable to those 
found in a population-based study of 
patients with diabetes and GFR <60 mL/
min/1.73 m2 who were not on dialysis 
(565). Another study using time-depen-
dent modeling of A1c values in patients 
with diabetes on dialysis found similar 
nonlinear associations with mortality 
(566). Nevertheless, A1c remains the 
best clinical marker of long-term glycemic 
control in persons with diabetes and CKD, 
particularly if combined with self-moni-
toring of blood glucose (554). Alternatives 
to A1c, including measurement of 
glycated albumin and fructosamine, may 
be of greater value in these persons, but 
their clinical value is still being explored.

BLOOD PRESSURE CONTROL
Blood pressure control, particularly 
with RAAS inhibitors, significantly 
decreases the risk of progression 
from moderate albuminuria to severe 
albuminuria, increases the rate of 
regression from moderate albuminuria 
to normoalbuminuria, and decreases the 
risk of heart failure and overall cardiovas-
cular outcomes in persons with diabetic 
kidney disease, regardless of type of 
diabetes (567,568,569). Although several 
types of antihypertensive drugs are 
effective in ameliorating the progression 
of diabetic kidney disease, including beta 
blockers, non-dihydropyridine calcium 
channel blockers, diuretics, and RAAS 
inhibitors, the purported relationship 
between increased intraglomerular 

TABLE 22.24. Characteristics of Persons With Type 2 Diabetes Included in Randomized Controlled Studies of Intensive Versus Conventional 
Glycemic Treatment

CHARACTERISTICS

STUDY, YEARS OF DATA COLLECTION

Kumamoto, NR
(Ref. 548)

UKPDS, 1977–1991
(Refs. 549,550)

ACCORD, 2001–2007 
(Ref. 551)

ADVANCE, 2001–2007 
(Ref. 552)

VADT, 2000–2008 
(Ref. 553)

No. of participants 110 4,209 10,251 11,140 1,791
Intensive therapy 55 3,071 5,128 5,571 892
Conventional therapy 55 1,138 5,123 5,569 899

Men (%) 50 47 62 58 97

Age (years) 49 53 62 66 60

Body mass index (kg/m2) 20 28 32 31 31

Duration of diabetes (years) 6.5 <1 10 8 11.5

Follow-up (years) 6 10 3.5 5 5.6

Previous CVD (%) 0 0 35 32 40

Initial A1c (%) 9 7.1 8.3 7.5 9.4

Final A1c (%)
Intensive group 7.1 7.0 6.4 6.8 6.9
Conventional group 9.4 7.9 7.5 7.3 8.4

Conversions for A1c values are provided in Diabetes in America Appendix 1 Conversions. A1c, glycosylated hemoglobin; ACCORD, Action to Control Cardiovascular Risk in 
Diabetes; ADVANCE, Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation; CVD, cardiovascular disease; NR, not reported; 
UKPDS, United Kingdom Prospective Diabetes Study; VADT, Veterans Affairs Diabetes Trial.

SOURCE: Reference 547, copyright © 2011 BMJ Publishing Group, reprinted with permission

TABLE 22.25. Effect of Intensive Versus Conventional Glycemic Control on Kidney Outcomes in Type 2 Diabetes

STUDY, YEARS OF DATA 
COLLECTION (REF.)

RANDOMIZED INTENSIVE VERSUS CONVENTIONAL GLYCEMIC CONTROL

↓ in New ACR 
≥30 mg/g

↓ in New ACR 
>300 mg/g

Hazard Ratio (95% CI) Risk Ratio (99% CI)

Serum Creatinine 
Doubling ESRD

ESRD or Serum 
Creatinine Doubling Severe Hypoglycemia

Kumamoto, NR (548) 62% 100% NR NR NR NR

UKPDS, 1977–1991 (549,550) 17% 34% p=0.02 NR 0.74 (0.26–2.11) 1.89 (0.69–5.19)

ACCORD, 2001–2007 (551) 21% 31% 1.07 (1.01–1.13) 0.95 (0.73–1.24) 1.03 (0.98–1.08) 3.00 (2.42–3.73)

ADVANCE, 2001–2007 (552) 8% 30% 1.15 (0.82–1.63) 0.64 (0.38–1.08) 1.10 (0.70–1.73) 1.85 (1.30–2.63)

VADT, 2000–2008 (553) 32% 37% p=0.99 p=0.35 1.0 (0.68–1.49) 2.74 (1.57–4.77)

ACCORD, Action to Control Cardiovascular Risk in Diabetes; ACR, albumin-to-creatinine ratio; ADVANCE, Action in Diabetes and Vascular Disease: Preterax and Diamicron 
Modified Release Controlled Evaluation; CI, confidence interval; ESRD, end-stage renal disease; NR, not reported; UKPDS, United Kingdom Prospective Diabetes Study; VADT, 
Veterans Affairs Diabetes Trial.

SOURCE: References are listed within the table.
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pressure and proteinuria that is mediated 
by RAAS components, as well as their 
association with virtually every aspect 
of kidney disease progression, has 
prompted many investigators to examine 
the effect of RAAS inhibitors, including 
primarily ACE inhibitors and ARB, on the 
progression of diabetic kidney disease.

A landmark study of 409 mostly 
hypertensive persons with type 1 
diabetes and urinary protein excretion 
≥500 mg/24 hours, who were random-
ized to receive either captopril (an ACE 
inhibitor) or placebo, found a 48% lower 
risk of doubling of serum creatinine 
concentration in the captopril group 
than in the placebo group after a median 
follow-up of 3 years (570). The risk of 
the combined endpoints of death, dial-
ysis, and transplantation was 50% lower 
(Figure 22.51). A significant renoprotective 
effect of captopril, however, was limited 
to those with baseline serum creatinine 
concentrations ≥1.5 mg/dL. No long-term 
studies have examined the renoprotective 
efficacy of ARBs in type 1 diabetes and 
advanced kidney disease. In persons with 
type 1 diabetes and lesser levels of ACR, 
with or without hypertension, randomized 
controlled studies demonstrate that RAAS 
inhibitors do not prevent increases in ACR, 
serum creatinine, or ESRD during up to 
5 years of follow-up (Table 22.26) (552, 
570,571,572,573,574,575,576,577,578, 

579,580,581,582,583,584,585,586, 587). 
Moreover, when given to normoalbumin-
uric, normotensive persons with type 1 
diabetes, these treatments do not reduce 
the rate of expansion of the mesangium 
over a period of 4–5 years (571).

In hypertensive persons with type 2 
diabetes and severe albuminuria, the 
RENAAL study (580) and the Irbesartan 
Diabetic Nephropathy Trial (IDNT) (581) 
reported results that were similar to 
those in persons with type 1 diabetes and 
severe albuminuria (Table 22.26) (570). 
The RENAAL study reported a 25% lower 
risk of doubling of serum creatinine and 
a 28% decrease in ESRD compared with 
placebo; the IDNT found a 33% lower risk 
of doubling of serum creatinine compared 
with placebo and a 37% lower risk 
compared with amlodipine. The Irbesartan 
in Patients With Type 2 Diabetes and 
Microalbuminuria (IRMA 2) study found 
that high-dose irbesartan prevented 
new severe albuminuria in hypertensive 
persons with moderate ACR levels (579). 
Although none of these three ARB trials 
found significant reductions in ESRD 
incidence during the intervention periods, 
several cost-benefit analyses based on 
the IDNT and the cost of medicine and 
ESRD treatment specific to the United 
States, Canada, and several European 
countries, consistently predicted both 
long-term survival advantage and higher 

cost-effectiveness with ARB than with 
other treatments (588). These benefits 
might be due in part to less comorbidity 
associated with RAAS treatment, such 
as heart failure and retinopathy, and in 
part to lower ESRD incidence when longer 
time periods are considered. No long-term 
studies have examined the renoprotective 
efficacy of ACE inhibitors in persons with 
type 2 diabetes and ACR ≥300 mg/g. Dual 
RAAS blockade is at least as effective as 
monotherapy in reducing blood pressure 
and albuminuria in persons with diabetes 
(584,589,590) but is less well tolerated by 
persons without hypertension or diabetes 
(582). The Ongoing Telmisartan Alone 
and in Combination With Ramipril Global 
Endpoint Trial (ONTARGET) (587) and 
Veterans Affairs Nephropathy in Diabetes 
(VA NEPHRON-D) (591) trials found an 
excess risk of acute kidney injury and 
hyperkalemia with dual RAAS therapy, 
without a significant cardiovascular and 
renal benefit. Further, even after 5 years 
of treatment, albuminuria increased to 
pretreatment levels soon after the with-
drawal of these drugs (571,572,573). This 
observation suggests the need for longer 
periods of normalization of both ACR 
and glycemic levels to achieve a durable 
treatment effect on underlying disease 
processes or more sensitive early markers 
of kidney disease progression.

FIGURE 22.51. Effect of Captopril on Incidence of Kidney Disease in Persons With Type 1 Diabetes and Proteinuria, 1987–1992

 























































          



The Collaborative Study included 409 subjects with type 1 diabetes and urinary protein excretion ≥500 mg/24 hours, who were randomized to receive either captopril or placebo 
and were followed for a median of 3 years. Treatment with captopril was associated with a significant reduction of both endpoints.

SOURCE: Reference 570, copyright © 1993 Massachusetts Medical Society, reprinted with permission
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TABLE 22.26. Randomized Controlled Studies of Renin-Angiotensin System Inhibitors

STUDY, YEARS OF DATA 
COLLECTION (REF.)

STUDY CHARACTERISTICS RENAL OUTCOMES

Treated Control
Type of 

Diabetes HT
Follow-up 
(Months)

Baseline ACR 
Category

Risk Ratio (95% CI)

New Moderate or 
Severe ACR Doubling in SCR ESRD

ACE versus placebo or other treatment

RASS, NR (571) 94 95 1 No 60 Normal 0.67 (0.20–2.31) 0 1.67 (0.40–7.00)

EUCLID, NR (572) 265 265 1 No 24 Mixed 0.73 (0.49–1.09) NR NR

Lewis, 1987–1992 (570,584) 207 202 1 Yes 36 Severe 0.67 (0.53–0.84)* 0.80 (0.62–1.04)*

HOPE, NR (573,585) 34 47 1 Yes 72 Normal to 
Moderate

0.71 (0.39–1.29)

1.34 (0.68–2.65)†
2.35 

(0.46–12.10)†1,774 1,722 2 Yes 72 Normal to 
Moderate

0.75 (0.60–0.90)

BENEDICT, NR (574) 301 300 2 Yes 36 Normal 0.60 (0.34–1.05) NR NR

Ravid, 1990–1997 (575) 97 97 2 Yes 72 Normal 0.34 (0.13–0.90) 0.38 (0.11–1.40)

ADVANCE, 2001–2008 
(552,585)

5,569 5,571 2 Yes 51.6 Mixed 0.84 (0.78–0.90) 0.62 (0.33–1.15) 0

ARB versus placebo or other treatment

DIRECT 1, 2001–2008 (576) 1,662 1,664 1 No 56.4 Normal 1.07 (0.53–2.14) NR NR

RASS, NR (571) 96 95 1 No 60 Normal 2.64 (1.08–6.45) 0 0

TRANSCEND, 2001–2008 
(577)

2,954 2,972 1, 2 Yes 56 Normal 0.75 (0.61–0.92) 0.99 (0.56–1.76) 0.50 (0.09–2.71)

DIRECT 2, 2001–2008 (576) 363 362 2 No 56.4 Normal HR 0.73 
(0.48–1.10)

NR NR

588 592 2 Yes 56.4 Normal HR 1.01 
(0.74–1.39)

NR NR

ROADMAP, 2004–2009 (578) 2,233 2,216 2 Yes 38.4 Normal 0.84 (0.70–1.02) 2.17 (0.89–5.29) 0

IRMA 2, NR (579,586) 194 201 2 Yes 24 Moderate HR 0.32 
(0.15–0.65)

NR NR

RENAAL, 1996–2001 
(580,586)

751 762 2 Yes 42 Severe NR 0.84 (0.70–1.01) 0.77 (0.64–0.93)

IDNT, 1996–2000 (581) 579 569 2 Yes 31.2 Severe NR 0.71 (0.54–0.92) 0.83 (0.62–1.11)

ACE versus ARB

RASS, NR (571) 94 96 1 No 60 Normal 0.25 (0.09–0.73) NR NR

ONTARGET, NR (582,587) 2,159 4,306 1, 2 Yes 56 Normal
1.04 (0.91–1.17)‡

HR 1.06 (0.70–1.60)*§

Moderate HR 1.16 (0.73–1.83)*§

Barnett, NR (583) 120 130 2 Yes 60 Moderate 1.04 (0.71–1.51) 0

ACE, angiotensin-converting enzyme; ACR, albumin-to-creatinine ratio; ADVANCE, Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled 
Evaluation; ARB, angiotensin receptor blocker; BENEDICT, Bergamo Nephrologic Diabetes Complications Trial; CI, confidence interval; DIRECT, Diabetic Retinopathy Candesartan 
Trials; ESRD, end-stage renal disease; EUCLID, EURODIAB Controlled Trial of Lisinopril in Insulin-Dependent Diabetes; HOPE, Heart Outcomes Prevention Evaluation; HR, 
hazard ratio; HT, hypertension; IDNT, Irbesartan Diabetic Nephropathy Trial; IRMA, Irbesartan Microalbuminuria in Patients With Type 2 Diabetes and Microalbuminuria; NR, 
not reported; ONTARGET, Ongoing Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial; RASS, Renin Angiotensin System Study; RENAAL, Reduction of 
Endpoints in Non-Insulin Dependent Diabetes With the Angiotensin II Antagonist Losartan; ROADMAP, Randomized Olmesartan and Diabetes Microalbuminuria Prevention; SCR, 
serum creatinine; TRANSCEND, Telmisartan Randomised Assessment Study in ACE Intolerant Subject With Cardiovascular Disease.
* Dual versus monotherapy with either ACE or ARB
† Outcome represents type 1 and type 2 diabetes subjects combined.
‡ Outcome represents entire study population.
§  Combined endpoint of chronic dialysis or doubling of serum creatinine

SOURCE: References are listed within the table.
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Adding the direct renin inhibitor aliskiren 
to an ARB (losartan) in persons with 
type 2 diabetes, hypertension, and ACR 
≥300 mg/g more effectively reduced 
mean urinary ACR than losartan alone 
(20%, 95% CI 9%–30%, p<0.001) (592); 
the mean eGFR decline during the 
24-week study period also tended to 
be lower in the aliskiren group (2.4 mL/
min/1.73 m2 in the aliskiren group vs. 3.8 
mL/min/1.73 m2 in the placebo group, 
p=0.07). The Aliskiren Trial in Type 2 
Diabetes Using Cardiorenal Endpoints 
(ALTITUDE), a subsequent, larger 
study in persons with type 2 diabetes, 
CKD, and high cardiovascular risk was 
stopped early due to therapeutic futility 
and increased risk of stroke and other 
adverse events (593). Neither ALTITUDE 
nor VA NEPHRON-D were continued 
long enough to establish efficacy and 
remained underpowered for their primary 
CVD and renal outcomes. Based on 
their other findings, however, dual RAAS 
blockade is contraindicated due to safety 
concerns (554).

In a meta-analysis exploring the benefit 
of intensive (achieved systolic blood 

pressure ≤135 mmHg) versus stan-
dard (achieved systolic blood pressure 
≤140 mmHg) blood pressure targets 
in subjects with type 2 diabetes, the 
former was associated with significant 
17% and 27% reductions in the odds for 
moderate and severe albuminuria, respec-
tively (594). For persons with severe 
albuminuria (>3 g/24 hours), a post hoc 
analysis from the MDRD study indicated 
better kidney outcomes with a lower 
blood pressure goal (<130/80 mmHg) 
(595). Whereas stringent blood pressure 
targets lowered the risk for stroke and 
death, the few studies reporting ESRD or 
doubling of serum creatinine showed no 
benefits for these outcomes, suggesting 
the importance of individualizing blood 
pressure goals in persons with diabetes 
to account for the presence and severity 
of CKD, age, and associated cardiovas-
cular risk. Moreover, ACE inhibitors and 
beta blockers may be less effective in 
controlling blood pressure and reducing 
albuminuria in African Americans than 
in whites (596,597,598), suggesting that 
different drug combinations may be more 
effective in slowing progression of kidney 
disease in African Americans (599,600). 

Table 22.27 shows the Eighth Joint 
National Committee’s (JNC 8) recommen-
dations for management of hypertension 
in the population with diabetes and CKD 
in comparison with other guidelines 
(600,601,602,603,604). The thresholds 
and goals recommended by the guide-
line-writing groups differ within a narrow 
range, with 2014–2015 recommendations 
endorsing less intensive and more individ-
ualized blood pressure targets for diabetes 
and CKD than in the past. In elderly 
persons, in particular, antihypertensive 
treatment should be individualized, taking 
into consideration such factors as frailty, 
comorbidities, and albuminuria (Figure 
22.52) (600). There is consensus on the 
initial use of RAAS treatment in persons 
with albuminuria, but not for those without 
elevated albuminuria.

CONTROL OF BLOOD LIPIDS
Persons with diabetes and CKD typically 
have an atherogenic lipid profile, 
characterized by low concentrations of 
HDL cholesterol, high concentrations of 
small, dense LDL cholesterol particles 
and triglycerides (393,605,606,607). 
Treatment with lipid-lowering medicines, 

TABLE 22.27. Guideline Comparisons of Blood Pressure Goals and Drug Therapy for Adults With Hypertension

GUIDELINE, YEAR (REF.) POPULATION
GOAL BP 
(mmHG) INITIAL DRUG TREATMENT OPTIONS

LEVEL OF 
EVIDENCE

Eighth Joint National 
Committee (JNC 8), 2014 
(

Albuminuria is defined as ACR ≥30 mg/g. ACE, angiotensin-converting enzyme inhibitor; ACR, albumin-to-creatinine ratio; ARB, angiotensin receptor blocker; BP, blood pressure; 
CCB, calcium channel blocker; CKD, chronic kidney disease; CVD, cardiovascular disease; DBP, diastolic blood pressure; SBP, systolic blood pressure.
* Defined as urinary protein >500 mg/24 hours or ACR >30 mg/mmol in two of three specimens.
† With or without diabetes

SOURCE: References are listed within the table.

600)

Diabetes <140/90 Nonblack: thiazide-type diuretic, ACE or ARB, or CCB
Black: thiazide-type diuretic or CCB

Expert opinion 

CKD <140/90 ACE or ARB Expert opinion 

American Diabetes 
Association (ADA), 2015 
(601)

Diabetes <140/90 ACE or ARB Strong 

Diabetes + young age <130/80 Moderate for DBP
Weak for SBP 

ACE or ARB

Diabetes + pregnancy <110–129/65–79 Methyldopa, labetalol, diltiazem, clonidine, or prazosin Expert opinion 

Diabetes + CKD <140/90 ACE or ARB Not rated

Canadian Hypertension 
Education Program 
(CHEP), 2014 (602)

Diabetes <130/80 ACE or ARB—with CVD risk
ACE or ARB, thiazide-type diuretic, CCB—without CVD risk

Weak

CKD + albuminuria* <140/90 ACE or ARB Moderate

European Society of 
Hypertension/European 
Society of Cardiology 
(ESH/ESC), 2013 (603)

Diabetes <140/85 ACE or ARB Strong

CKD no albuminuria <140/90 No recommendation Moderate

CKD + albuminuria <130/90 ACE or ARB Moderate

Kidney Disease: Improving 
Global Outcome (KDIGO), 
2012 (604)†

CKD no albuminuria ≤140/90 No recommendation Moderate

CKD + moderate albuminuria ≤130/80 ACE or ARB Very weak

CKD + severe albuminuria ≤130/80 ACE or ARB Weak

Kidney transplant recipients ≤130/80 CCB Not rated
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particularly statins, can reduce the high 
cardiovascular risk in this population. 
There is no conclusive evidence, however, 
that such treatment also affects 
progression of diabetic kidney disease 
(608,609,610,611). The Study of Heart 
and Renal Protection (SHARP) (612) is 

the largest randomized controlled trial 
in persons with CKD (average eGFR 
27 mL/min/1.73 m2) to demonstrate 
that a lipid-lowering strategy with a 
statin plus ezetimibe significantly 
reduces major atherosclerotic events, 
such as coronary death, myocardial 

infarction, nonhemorrhagic stroke, and 
arterial revascularization procedures, 
compared with placebo (HR 0.83, 95% 
CI 0.74–0.94). The relative effect on 
these outcomes was similar in persons 
with or without diabetes, although the 
study was not adequately powered 
for subgroup analyses—only 23% of 
the 9,438 participants had diabetes. 
The study detected no effect of lipid-
lowering treatment on the frequency of 
doubling of the baseline serum creatinine 
concentration or progression to ESRD. 
This and other studies (613,614,615) 
found no cardiovascular benefit of statin 
therapy when it was initiated in persons 
with diabetes after the onset of dialysis. 
By contrast, lipid-lowering therapy 
appears highly beneficial in reducing 
cardiovascular events in diabetic and 
nondiabetic persons with a functioning 
kidney transplant (616).

Other lipid-changing medicines may be of 
value in the management of persons with 
diabetes and CKD. The Veterans Affairs 
High-density lipoprotein Intervention Trial 
(VA-HIT) (617) reported in a post hoc 
analysis that gemfibrozil reduced risk 
of major cardiovascular events by 42% 
compared with placebo in persons with 
GFR <75 mL/min/1.73 m2 and diabetes. 
The Diabetes Atherosclerosis Intervention 
Study (DAIS) (618) and the Fenofibrate 
Intervention and Event Lowering in 
Diabetes (FIELD) study (619,620) both 
found that fenofibrate significantly 
lowered the risk of new-onset moderate 
albuminuria and promoted regression 
from moderate to normal albuminuria 
compared with placebo in persons with 
type 2 diabetes. On the other hand, 
fenofibrate did not change the risk of 
progression from moderate to severe 
albuminuria.

DIETARY MODIFICATION
In animals with experimental diabetes, 
reduced protein intake protects against 
hyperfiltration and progressive sclerosis 
of functioning glomeruli (621,622). In 
persons with type 1 diabetes and normal 
urinary albumin excretion, short-term 
dietary protein restriction favorably modi-
fies glomerular hemodynamic function, 

FIGURE 22.52. 2014 Hypertension Guideline Management Algorithm, Eighth Joint National 
Committee

 



































































































ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; CCB, calcium channel blocker; 
CKD, chronic kidney disease; DBP, diastolic blood pressure; SBP, systolic blood pressure.
* ACEIs and ARBs should not be used in combination.
† If blood pressure fails to be maintained at goal, reenter the algorithm where appropriate based on the current 

individual therapeutic plan.

SOURCE: Reference 600, reproduced with permission, copyright © 2014 American Medical Association. All rights 
reserved.
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TABLE 22.28. Clinical Trials of the Effect of Dietary Protein Reduction on the Course of Diabetic Nephropathy in Persons With Type 1 
Diabetes and Severe Albuminuria

LOCATION (REF.)
NO. OF 

PERSONS
TREATMENT 

DURATION (MONTHS)
PROTEIN RESTRICTION 

(G/KG/DAY) OUTCOME IN TREATMENT GROUP

Italy (628) 16 4.5 0.7 Decreased urinary albumin excretion

Texas (629) 11 24 0.6 Decreased urinary protein excretion

United Kingdom (630) 19 33 0.7 Decreased rate of GFR decline; decreased urinary albumin excretion

Not reported (631) 35 34.7 0.6 Decreased rate of GFR decline; decreased urinary albumin excretion

In the studies in References 628 and 631, a protein-restricted diet was compared with a standard diet; in Reference 629, there was no control group; in Reference 630, subjects 
were compared before and after dietary protein restriction. Severe albuminuria is defined by proteinuria ≥0.5 g/24 hours. GFR, glomerular filtration rate.

SOURCE: References are listed within the table.

FIGURE 22.53. Cumulative Incidence of End-Stage Renal Disease or Death in Persons With 
Type 1 Diabetes, by Protein Intake

 














































































 


Eighty-two persons with severe albuminuria were randomized to usual-protein diet and low-protein diet. The numbers 
at the bottom of the figure represent the number of persons in each group at risk for the event at baseline and after 
each 6-month period (p=0.042). ESRD, end-stage renal disease.

SOURCE: Reference 632, copyright © 2002 Elsevier, reprinted with permission

and in those with moderate albuminuria, 
it also reduces urinary albumin excretion 
(623,624,625,626,627). Similar effects 
were found in persons with clinical protein-
uria (Table 22.28) (628,629,630,631). The 
largest of these studies (632) randomized 
82 persons with type 1 diabetes, severe 
albuminuria, and prerandomization 
GFR decline of 7.1 mL/min/year to 
usual-protein diet (1.02 g/kg/day, 95% 
CI 0.95–1.10) and reduced-protein diet 
(0.89 g/kg/day, 95% CI 0.83–0.95) 
(p=0.005) for a period of 4 years. At 
the end of the study, the CVD-adjusted 
risk of ESRD or death was 0.23 (95% CI 
0.07–0.72, p=0.01) in the group receiving 
the reduced-protein diet compared 
with the group receiving the usual diet 
(Figure 22.53), suggesting that even 
moderate protein restriction, which moves 
intakes from excess toward the norm, 

provides benefits beyond conventional 
drug therapy in these persons.

Fewer studies are available in persons 
with type 2 diabetes. A study of the 
efficacy of dietary protein restriction in 
160 persons with type 2 diabetes and 
moderate albuminuria or ≥5 years dura-
tion of diabetes found no beneficial effect 
of protein restriction on albuminuria or 
eGFR over a mean follow-up of 28 months 
(633). In fact, a protein intake restricted 
to 0.8 g/kg/day could not be effectively 
achieved beyond the first 6 months of the 
study, reflecting the inconvenience associ-
ated with a strict dietary regimen that may 
outweigh the benefits of such therapy. A 
systematic review of randomized studies 
(634) concluded that a reduced-protein 
diet in persons with CKD associated with 
either type of diabetes had no signifi-
cant effect on kidney function relative 

to normal protein consumption, despite 
improvements in proteinuria and A1c, and 
that dietary protein restriction may signifi-
cantly increase the risk for malnutrition 
in those with more advanced CKD (635). 
On the other hand, studies evaluating a 
reduction or alteration of protein intake in 
persons with diabetes and CKD are gener-
ally small (under 100 subjects), of short 
duration (<2 years), have limited docu-
mentation on the quality of protein (animal 
or vegetable), fat and carbohydrate intake, 
and evaluate intermediate outcomes, i.e., 
albuminuria and eGFR, rather than major 
health outcomes.

Sodium intake is a major contributor to 
blood pressure increase. According to the 
Institute of Medicine (636), about 75% of 
dietary sodium intake is obtained from 
preprocessed foods or is added to restau-
rant food during preparation, and only about 
25% comes from natural sources or is added 
by the consumer. The Dietary Guidelines 
for Americans (637) recommends that 
persons age ≥51 years, African Americans, 
and persons with hypertension, diabetes, or 
CKD limit their sodium intake to 1,500 mg 
daily. In the NHANES 2005–2008, virtually 
all (99.4%) of those encouraged to limit their 
sodium intake exceeded the recommended 
limit on a daily basis (638). Although sodium 
reduction has a positive impact on blood 
pressure in persons with diabetes (639), 
its long-term effect on kidney outcomes 
remains unclear. Most individuals may 
benefit from a Dietary Approaches to 
Stop Hypertension (DASH) diet, a reduced 
sodium diet emphasizing fruits, vegetables, 
low-fat dairy foods, whole grains, nuts, 
poultry, fish, and smaller amounts of red 
meat and refined sugars than the typical 
diet in the United States (640). The DASH 
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diet reflects a shift towards whole-diet 
approaches to the management of CKD in 
diabetes that integrates multiple healthful 
eating goals simultaneously, without a 
focus on single nutrients. In addition to 
lowering blood pressure, a DASH-type diet 
reduced kidney function loss over 11 years 
in women from the Nurses’ Health Study 
with mildly decreased eGFR, an effect 
primarily associated with reduced red meat 
intake (641). Nonetheless, the DASH diet 
may not be suitable, without modification, 
for persons with GFR <60 mL/min/1.73 m2 
because of its high content of potassium 
(4.5 g/day), phosphorus (1.7 g/day), and 
protein (1.4 g/kg/day).

OTHER TREATMENTS
Modification of blood pressure, metabolic 
control, diet, and treatment with dialysis 
or transplantation are the mainstays of 
treatment of kidney disease in persons 
with diabetes, and a majority of the 
research into new therapeutic approaches 
has focused on one or more of these ther-
apies. Nevertheless, a growing body of 
evidence indicates that the development 
of diabetic kidney disease is related to 
specific metabolic derangements induced 
by hyperglycemia that interplay with 

hemodynamic pathways. Advanced glyca-
tion endproducts (642), TGF-β, and other 
growth factors (643,644,645,646) play 
key roles in promoting chemical, cellular, 
and tissue disorders linked to progression 
of kidney disease. Animal studies suggest 
that inhibitors of advanced glycation 
endproduct formation ameliorate glomer-
ulosclerosis and improve albuminuria 
and kidney function (647), and advanced 
glycation endproduct crosslink breakers 
improve endothelial function and arterial 
compliance, with reductions in arterial 
pulse pressure and albuminuria in 
persons with type 1 diabetes (648,649). 
Antioxidant inflammation modulators, 
such as eicosapentaenoic acid or pent-
oxifylline (650,651), improved kidney 
function and proteinuria in small studies 
of persons with type 1 or type 2 diabetes, 
and treatment with Rho GTPase and 
Rho-associated kinase inhibitors (ROCKs) 
mitigated mesangial expansion, thickening 
of glomerular basement membrane, and 
albuminuria in experimental diabetic 
kidney disease (652).

Persons with diabetes and CKD require 
multidisciplinary management involving 
a combination of all treatments and 

behavioral adjustments to hold off 
the progression of kidney disease 
per se and to prevent the associated 
complications. The Steno-2 study, a 
landmark prospective, randomized trial 
in Denmark (653), demonstrated that 
intensive multifactorial intervention 
reduces the incidence of microvascular 
and macrovascular outcomes in patients 
with type 2 diabetes and persistent 
moderate albuminuria. At the end of the 
randomization period (mean duration 7.8 
years), participants in the intervention 
arm (n=80) had significantly lower systolic 
and diastolic blood pressure, A1c, total 
cholesterol, LDL cholesterol, triglycerides, 
and ACR than those randomized to 
conventional treatment (n=80). Although 
these differences disappeared during 
the 5.5 years of post-trial observational 
follow-up, intensive therapy reduced 
the risk of death (HR 0.54, 95% CI 
0.32–0.89, p=0.02), death from CVD 
(HR 0.43, 95% CI 0.19–0.94, p=0.04), 
severe albuminuria (HR 0.44, 95% CI 
0.25–0.77, p=0.04), diabetic retinopathy 
(HR 0.57, 95% CI 0.37–0.88, p=0.01), and 
autonomic neuropathy (HR 0.53, 95% CI 
0.34–0.81, p=0.004) during the entire 
13.3-year study period.



Kidney Disease in Diabetes

22–55

OTHER KIDNEY DISEASES ASSOCIATED WITH DIABETES

INFECTIONS
Urinary Tract Infections
Persons with diabetes may be more 
susceptible to infections of the urinary 
tract. Autopsy studies from the preantibi-
otic era (654,655,656,657,658) reported 
10%–20% prevalence of histologic pyelone-
phritis in persons with diabetes, five times 
that of persons without diabetes. Not 
only was the frequency of urinary tract 
infection greater in those with diabetes 
at that time, but the infections were often 
more serious and protracted (655). With 
the introduction of effective antimicrobial 
therapy, the frequency and severity 
of urinary tract infections may have 
diminished (659). Additional information 
about urinary tract infections in persons 
with diabetes is provided in Chapter 28 

Urologic Diseases and Sexual Dysfunction 
in Diabetes and Chapter 30 Infections 
Associated With Diabetes.

Table 22.29 presents the prevalence of 
asymptomatic bacteriuria in persons 
with and without diabetes from several 
different clinic- or hospital-based popu-
lations (660,661,662,663,664,665,666, 
667, 668,669,670,671,672,673,674,675, 
676, 677). In a systematic review and 
meta-analysis of published data since 
1966, women with diabetes have about 
three times the frequency of bacteriuria 
as nondiabetic women (OR 2.6, 95% 
CI 1.6–4.1), and men with diabetes 
have about four times the frequency of 
bacteriuria as healthy control subjects 
(OR 3.7, 95% CI 1.3–10.2) (660,665,666, 

670,678,679,680,681,682,683,684, 
685). Some studies report a longer 
duration of diabetes in women with 
asymptomatic bacteriuria than in those 
without (pooled difference 0.17 years, 
95% CI 0.03–0.31, p=0.01), but the 
same review found no difference in A1c 
(660). Some studies show a relationship 
between asymptomatic bacteriuria in 
diabetic persons and the more frequent 
development of genitourinary tract 
infections (677,686,687,688,689), but 
others show no relationship (659,690). 
In most studies, the microorganisms 
causing asymptomatic bacteriuria in 
persons with diabetes are similar to 
those causing bacteriuria in nondiabetic 
persons (659), but a survey of 514 
diabetic and 405 nondiabetic subjects 

TABLE 22.29. Prevalence of Asymptomatic Bacteriuria in Populations With and Without Diabetes

LOCATION, 
YEARS OF DATA 

COLLECTION (REF.)

NO. 
DIABETES/
CONTROL

MEAN AGE (YEARS) 
(DIABETES/
CONTROL)

PATIENT SOURCE 
(DIABETES/ 
CONTROL) POPULATION

TYPE OF 
DIABETES

PREVALENCE 
N (%)

Diabetes Controls

Israel, 2002–2003 
(661)

411/160 59.6/53.3 Outpatient clinics Women 2 25 (6) 4 (3)

Italy, 1997–2000 (662) 228/146 57.7/59.0 Outpatient clinics Women 1, 2 40 (18) 27 (18)

Zimbabwe, 1999–
2000 (663)

123/53 51.0/46.0 Outpatient clinics Africans 1, 2 39 (32) 6 (11)

Turkey, 1988–1989 
(664)

110/100 Not available Hospital Men and women 1, 2 6/64 (9) women,
1/46 (2) men

0/56 (0) women,
0/44 (0) men

California, NR (665) 752/200 55.0/54.0 Outpatient clinics Men and women 2 31/341 (9) women,
1/411 (0.2) men

5/100 (5) women,
0/100 (0) men

Nigeria, NR (666) 190/190 Not available Outpatient clinics Africans 1, 2 9/100 (9) women,
3/90 (3) men

8/100 (8) women,
2/90 (2) men

Hungary, NR (667) 133/178 15.6/14.1 Outpatient clinic/ 
medical students

Youth 1 14/64 (22) women,
8/66 (12) men

5/84 (6) women,
0/94 (0) men

Chile, NR (668) 50/50 Not available Outpatient clinics Women 2 16 (32) 2 (4)

India, NR (669) 87/93 18–60/18–60 
(range)

Outpatient clinics Men and women 1, 2 5/42 (12) women,
2/48 (4) men

4/48 (8) women,
1/45 (2) men

South Africa, NR (670) 100/36 57.0/72.0 Outpatient clinics Men and women 1, 2 8/60 (13) women 1/36 (3)

Hungary, NR (671) 178/194 15.1/14.4 Outpatient clinics Children and 
adolescents

1 14/67 (21) women,
8/66 (12) men

5/84 (6) women,
0/94 (0) men

Iran, 2004 (672) 202 56.0 Outpatient clinics Women 2 22 (11)

Canada, 1989–1993 
(673)

1,072 >16 Outpatient clinics Women 1, 2 85 (8)

Washington, 1998–
2002 (674)

218/799 Not available Epidemiologic 
cohort study

Postmenopausal 
women

1, 2 14 (6) 32 (4)

Greece, 2001–2002 
(675)

363/350 61.3/63.0 Outpatient clinics Women 2 35 (10) 10 (3)

Netherlands, 1996–
1997 (676,677)

636/153 59.4 Outpatient clinic/
health center

Women 1, 2 163 (26) 9 (6)

NR, not reported.

SOURCE: Reference 660 and references listed within the table.
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found that nearly half of the diabetic 
subjects with bacteriuria were infected 
by bacteria other than E. coli, whereas 
all but one case of bacteriuria in the 
nondiabetic subjects were caused by 
E. coli (679). The prevalence of asymp-
tomatic bacteriuria is not influenced by 
the type of diabetes (659,660).

The prevalences of cystitis and pyelone-
phritis in 550 women with type 1 diabetes 
in the UroEDIC survey—EDIC year 10 
subjects surveyed for urologic compli-
cations of type 1 diabetes—were 15% 
and 3% during the preceding 12 months 
(691). Table 22.30 presents risk factors 
for urinary tract infections in this cohort. 
The prevalence of cystitis in UroEDIC 
women was similar to that in nondiabetic 
white women age 20–59 years from the 
NHANES III. Among the men in UroEDIC, 
the prevalence of urinary tract infections 
was 4% for cystitis and 0% for pyelone-
phritis, too low to be included in the risk 
factor evaluation.

HIV
Diabetes and hypertension associated with 
HIV infection are described as risk factors 
for the development of HIV-associated 
immune complex kidney disease 
(692,693,694). While hypertension may 
be a consequence of HIV-related kidney 
disease, the association with diabetes 
appears to be mediated by post-infectious 
glomerulonephritis (692,695). A cross- 
sectional comparison of persons with 
type 2 diabetes with and without HIV infec-
tion and persons with HIV infection only 
is presented in Table 22.31 (696). Among 
the 73 HIV-infected persons with type 2 
diabetes, the combination of diabetes, 
higher HIV viral load, and antiretroviral 
treatment with abacavir was a significant 
predictor of ACR ≥30 mg/g. Antiretroviral 

therapy has nephrotoxic effects, including 
tubulointerstitial nephropathies, proximal 
tubular dysfunction, Fanconi’s syndrome, 
and nephrogenic diabetes insipidus (697). 
Chapter 6 Other Specific Types of Diabetes 
provides additional information about the 
relationship of diabetes with HIV infection 
and drugs for HIV therapy.

RENAL PAPILLARY NECROSIS
Impaired blood flow to the inner medulla 
and papilla of the kidney can lead to anoxic 
damage and ultimately to renal papillary 
necrosis. Sloughing of the renal papilla 
may ensue, which can obstruct the renal 
pelvis. Individuals may remain asymp-
tomatic or develop flank pain and renal 
colic. Historically, the prevalence of renal 
papillary necrosis at autopsy is 20–30 
times as great in persons with diabetes 
as in those without (698). Among persons 

with diabetes, it occurs bilaterally in half 
of the cases and is 2.5 times as frequent 
in women as in men (655,656,699). 
Moreover, persons with diabetes and acute 
pyelonephritis are at particularly high risk 
of renal papillary necrosis. In one study, 
27% of diabetic subjects with renal papil-
lary necrosis at autopsy also had acute 
fulminant pyelonephritis (656). A review 
of the medical records of the 165 patients 
diagnosed with renal papillary necrosis 
at the Mayo Clinic between 1976 and 
1992 showed that among patient groups 
with diabetes, analgesic abuse, or urinary 
tract infections, the diagnosis was more 
frequent in women than men (700). The 
10-year survival rate from the time of diag-
nosis was significantly lower for patients 
with diabetes than without (44% vs. 77%), 
and progression to ESRD was more 
frequent in the presence of diabetes.

TABLE 22.30. Adjusted Odds Ratios for Cystitis and Pyelonephritis in Women With Type 1 
Diabetes Participating in the Uro-EDIC Survey, 2002–2004

CHARACTERISTICS

ODDS RATIO (95% CI)

Cystitis* Pyelonephritis†

Conventional versus intensive treatment (DCCT) 0.70 (0.40–1.22) 0.19 (0.04–0.85)

Primary versus secondary DCCT cohort 1.60 (0.92–2.79) 0.71 (0.19–2.76)

Age (per 1-year increase) 0.98 (0.94–1.03) 0.95 (0.85–1.07)

After versus before menopause 1.41 (0.66–3.00) 1.02 (0.15–6.87)

Composite vascular complication score‡ 
0 1 1
1 2.09 (1.12–3.91) NR
2–4 0.96 (0.26–3.52) NR
1–4 NR 4.48 (1.08–18.54)

Sexual activity last 12 months 8.28 (1.45–158.32)§ 0.90 (0.10–7.76)

The study included 550 women with type 1 diabetes participating in the Uro-EDIC survey. CI, confidence interval; 
DCCT, Diabetes Control and Complications Trial; NR, not reported; Uro-EDIC, ancillary study of urologic complica-
tions in the DCCT/Epidemiology of Diabetes Interventions and Complications (EDIC) cohort.
* Additional covariates in the cystitis multivariate model were not statistically significant at p≤0.01, including race 

(p=0.05), frequency of sexual intercourse in the last 12 months (p=0.43), exercise (p=0.20), alcohol use (p=0.13), 
total cholesterol (p=0.11), or triglycerides (p=0.22).

† Additional covariates in the pyelonephritis multivariate model were not statistically significant at p≤0.01, including 
smoking (p=0.06), oral contraceptive use (p=0.04), or diabetic ketoacidosis ever (p=0.39).

‡ Composite vascular complication score of 0 to 4 is based on a history of proliferative retinopathy, nephropathy, 
neuropathy, or cardiovascular/cerebrovascular event.

§ Likelihood ratio test

SOURCE: Reference 691, copyright © 2009 Elsevier, reprinted with permission



Kidney Disease in Diabetes

22–57

CONCLUSIONS

Chronic kidney disease is a public health 
problem that affects nearly 14% of the 
U.S. population and is disproportionately 
distributed among minority and disadvan-
taged groups. Most risk factors for CKD 
are modifiable; therefore, public health 
strategies targeting these factors may 
significantly reduce the disease burden.

Diabetes is the leading cause of CKD, 
and the increasing prevalence of diabetes 
together with improved availability of 
dialysis and transplants have sustained a 
continued rise in the proportion of CKD 
attributable to diabetes since the 1980s. 
In persons with type 1 diabetes, the inci-
dence of CKD has declined in parallel with 

a significant trend for earlier initiation of 
antihypertensive treatment following the 
onset of diabetes, expansion of RAAS 
inhibitor usage, and sustained improve-
ments in glycemic control. On the other 
hand, in persons with type 2 diabetes, 
the incidence of CKD does not appear to 
be declining, possibly due to the higher 

TABLE 22.31. Demographic and Clinical Characteristics of Subjects With HIV, Diabetes, 
and Both HIV and Diabetes, 2007–2009

CHARACTERISTICS HIV+ AND DIABETES HIV+ DIABETES P-VALUE

N 73 82 61

Age (years) 52±1 45±1 51±1 <0.0001*
0.9†

<0.0001‡

Race/ethnicity (%) 0.0002

Caucasian 18 48 25

African American 74 38 67

Hispanic 5 7 8

Asian 1 6 0

Other 2 1 0

Sex (%) 0.1

Male 63 78 67

Female 37 22 33

BMI (kg/m2) 31±1 26±1 35±1 <0.0001*
0.001†

<0.0001‡

Systolic BP (mmHg) 131±2 123±1 127±3 0.002*
0.16†
0.13‡

Diastolic BP (mmHg) 80±1 77±1 77±1 0.18

RAAS use (%) 49% 20% 64% <0.0001*
0.09†

<0.0001‡

Duration diabetes (years) 6.8±0.7 6.2±0.8§ 0.53

Current insulin use (%) 29 21 0.32

A1c 7.1±0.2 7.8±0.3 0.03

Duration HIV (years) 13±1 14±1 0.38

CD4 (cells/mL) 588±32 522±30 0.13

HIV VL <50 copies/mL (%) 56 81 0.0007

Current ARV therapy (%) 77 94 0.002

ARV therapy naïve (%) 15 1 0.0006

Duration ARV therapy (years) 7.7±0.6 7.9±0.5 0.8

Serum creatinine (mg/dL) 0.96±0.02 0.98±0.02 0.94±0.02 0.45

GFR (mL/min) 82.0±2.3 88.1±2.2 82.6±1.9 0.09

ACR (mg/g) 117.5±36.8 17.7±5.4 59.9±32.2 <0.0001*
0.1†

0.04‡

Data are from a cross-sectional study including 73 HIV-infected adults with type 2 diabetes, 82 HIV-infected adults 
without diabetes, and 61 control subjects without HIV or diabetes. Conversions for A1c values are provided in 
Diabetes in America Appendix 1 Conversions. A1c, glycosylated hemoglobin; ACR, urinary albumin-to-creatinine 
ratio; ARV, antiretroviral therapy; BMI, body mass index; BP, blood pressure; CD4, cluster of differentiation 4; GFR, 
glomerular filtration rate, calculated using the Cockroft-Gault equation; HIV, human immunodeficiency virus; RAAS, 
renin-angiotensin aldosterone system; VL, viral load.
* p-value for HIV+ diabetes+ versus HIV+
† p-value for HIV+ diabetes+ versus diabetes+
‡ p-value for HIV+ versus diabetes+
§ Data were available on 43 subjects.

SOURCE: Reference 696
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LIST OF ABBREVIATIONS

A1c . . . . . . . . . . . . . glycosylated hemoglobin
ABCA1 . . . . . . . . . . ATP-binding cassette transporter
ACCORD . . . . . . . . Action to Control Cardiovascular Risk in 

Diabetes
ACE . . . . . . . . . . . . angiotensin-converting enzyme
ACR . . . . . . . . . . . . albumin-to-creatinine ratio
ADA . . . . . . . . . . . . American Diabetes Association
ADVANCE  . . . . . . . Action in Diabetes and Vascular Disease: 

Preterax and Diamicron Modified Release 
Controlled Evaluation

AER . . . . . . . . . . . . albumin excretion rate
ALTITUDE  . . . . . . . Aliskiren Trial in Type 2 Diabetes Using 

Cardiorenal Endpoints
ARB . . . . . . . . . . . . angiotensin receptor blocker
ATP  . . . . . . . . . . . . adenosine triphosphate
BMI . . . . . . . . . . . . body mass index
CI . . . . . . . . . . . . . . confidence interval
CKD . . . . . . . . . . . . chronic kidney disease
CVD . . . . . . . . . . . . cardiovascular disease
DASH . . . . . . . . . . . Dietary Approaches to Stop Hypertension
DCCT . . . . . . . . . . . Diabetes Control and Complications Trial
DNA . . . . . . . . . . . . deoxyribonucleic acid
EDC . . . . . . . . . . . . Epidemiology of Diabetes Complications 

study
EDIC  . . . . . . . . . . . Epidemiology of Diabetes Interventions 

and Complications study
EDTA . . . . . . . . . . . ethylenediaminetetraacetic acid
eGFR . . . . . . . . . . . estimated glomerular filtration rate
ESRD . . . . . . . . . . . end-stage renal disease

FinnDiane  . . . . . . . Finnish Diabetic Nephropathy study
GFR . . . . . . . . . . . . glomerular filtration rate
HDL . . . . . . . . . . . . high-density lipoprotein
HIV . . . . . . . . . . . . . human immunodeficiency virus
HR . . . . . . . . . . . . . hazard ratio
IDNT  . . . . . . . . . . . Irbesartan Diabetic Nephropathy Trial
KDIGO . . . . . . . . . . Kidney Disease: Improving Global 

Outcomes
KEEP . . . . . . . . . . . Kidney Early Evaluation Program
LDL . . . . . . . . . . . . low-density lipoprotein
MDRD . . . . . . . . . . Modification of Diet in Renal Disease
NHANES . . . . . . . . National Health and Nutrition Examination 

Survey
NKF . . . . . . . . . . . . National Kidney Foundation
NSAID . . . . . . . . . . nonsteroidal anti-inflammatory drugs
OR . . . . . . . . . . . . . odds ratio
RAAS . . . . . . . . . . . renin-angiotensin-aldosterone system
RENAAL . . . . . . . . . Reduction of Endpoints in Non-insulin 

dependent diabetes with the Angiotensin II 
Antagonist Losartan

SMR . . . . . . . . . . . . standardized mortality ratio
TGF-β . . . . . . . . . . . transforming growth factor beta
UKPDS. . . . . . . . . . United Kingdom Prospective Diabetes 

Study
UroEDIC  . . . . . . . . ancillary study of urologic complications in 

the DCCT/EDIC cohort
USRDS . . . . . . . . . . United States Renal Data System
VA NEPHRON-D  . . Veterans Affairs Nephropathy in Diabetes
VLDL . . . . . . . . . . . very low-density lipoprotein

CONVERSIONS

Conversions for A1c, cholesterol, 
and triglyceride values are provided 
in Diabetes in America Appendix 1 
Conversions.
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number and prevalence of CKD risk 
factors associated with type 2 diabetes 
that outweigh current treatment options 
or their effectiveness. An ever-increasing 
number of persons with diabetes, 91% of 
whom have type 2 diabetes, are requiring 
renal replacement therapy, at enormous 
cost to patients, their families, and to 
society.

Improved management of hyperglycemia, 
hypertension, hyperlipidemia, and 
albuminuria have dramatically slowed 
progression to ESRD, as illustrated by 
a level incidence of ESRD attributed 
to diabetes since 2005. Trends in the 
incidence of ESRD due to diabetes, 
however, differ broadly by age and 
race/ethnicity. At the national level, 

the incidence of ESRD in persons with 
a primary diagnosis of diabetes remains 
higher in African Americans, Mexican 
Americans, Asians, and American Indians 
than in whites, with the highest rates 
being found in African Americans and 
American Indians.
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APPENDIX 22.1. Crude and Adjusted 1-Year Survival Probabilities Among Incident End-Stage Renal Disease Persons, by Age, Sex, Race/
Ethnicity, and Primary Diagnosis, U.S., 1980–2011

CHARACTERISTICS

PERCENT

1980 1985 1990 1995 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Crude

All 80.7 77.9 77.3 77.0 75.3 75.2 75.2 75.0 75.5 75.7 76.3 76.6 77.2 77.8 78.2 79.1

Age (years)
0–4 91.8 90.6 83.3 86.3 82.2 88.4 89.8 88.6 88.5 90.1 87.1 92.3 91.3 88.7 93.8 91.8
5–9 93.5 93.9 95.8 95.7 96.2 96.6 95.0 95.9 97.9 97.9 96.2 96.8 94.2 94.2 97.9 98.5
10–14 96.6 98.1 96.4 97.4 97.4 97.7 97.3 98.4 98.3 98.1 98.6 99.3 98.9 98.9 98.5 98.9
15–19 96.7 97.4 95.8 97.6 98.0 97.0 97.6 96.8 96.7 96.6 97.4 97.7 97.6 96.9 98.0 97.8
20–29 92.7 93.2 92.8 91.5 93.7 94.5 93.7 93.6 93.5 93.3 94.0 94.2 94.2 94.5 94.9 94.6
30–39 89.5 90.3 89.6 88.5 90.7 91.0 91.2 91.3 91.7 91.7 92.8 92.7 92.1 92.9 93.4 93.9
40–49 89.1 89.0 88.9 88.4 89.0 88.7 88.4 88.2 88.7 88.6 89.3 89.7 89.8 90.4 91.1 91.6
50–59 84.8 83.2 84.1 85.0 84.6 84.4 84.8 84.1 84.9 84.6 85.3 85.5 85.9 86.2 86.3 87.2
60–64 78.4 76.4 77.2 78.9 78.9 79.7 79.3 80.0 80.4 80.8 81.1 81.2 82.3 82.2 82.4 83.6
65–69 70.3 68.9 72.5 74.5 73.9 74.4 74.4 74.8 74.6 75.5 76.4 76.2 76.7 77.8 77.7 78.4
70–74 65.5 64.1 67.1 69.2 68.5 68.3 68.3 68.6 69.0 69.5 70.6 70.8 70.9 72.3 73.1 73.6
75–79 58.6 62.2 62.1 62.7 62.5 62.7 63.0 62.6 63.1 63.8 63.7 64.7 65.9 66.1 67.0 68.3
80–84 53.7 55.0 56.0 57.6 55.1 55.2 56.5 56.9 57.2 57.1 57.1 57.8 59.7 60.6 61.6 61.7
≥85 52.9 46.2 49.3 50.3 47.3 46.9 47.5 46.1 47.4 48.6 48.1 50.5 51.5 51.5 52.2 54.1

Sex
Men 80.6 77.8 77.1 76.9 75.9 75.7 75.7 75.5 75.8 76.2 76.7 76.9 77.3 78.0 78.3 79.3
Women 80.9 78.1 77.6 77.0 74.6 74.7 74.5 74.5 75.1 75.1 75.7 76.3 77.1 77.6 78.0 78.7

Race/ethnicity
White 78.9 75.5 74.5 74.2 72.3 72.2 72.1 72.2 72.6 73.0 73.5 73.8 74.4 74.8 75.2 76.2
Black 85.1 83.0 82.6 81.3 79.8 80.2 80.1 79.5 80.1 80.3 81.2 81.7 82.2 82.9 83.3 84.1
American Indian 93.8 80.8 84.4 84.8 78.4 84.6 86.0 83.6 82.9 84.9 85.3 86.8 83.2 87.0 88.9 87.4
Asian 100.0 82.5 86.1 83.9 85.0 84.0 84.2 84.2 84.8 84.4 84.4 84.0 85.6 87.2 86.6 86.8
Other 72.2 74.9 77.1 78.8 80.1 78.7 78.8 78.1 79.3 76.9 74.0 71.8 67.2 69.9 64.0 70.6
Hispanic* 81.9 81.9 81.6 81.8 82.4 82.3 83.5 83.8 84.1 84.8 85.0 85.2
Non-Hispanic* 74.2 74.3 74.2 74.1 74.5 74.7 75.2 75.5 76.1 76.7 77.1 78.0

Primary diagnosis
Diabetes 78.3 75.2 76.7 77.6 76.1 76.4 76.4 76.7 77.2 77.2 78.2 78.3 79.1 80.0 80.2 81.0
HTN 83.6 76.2 74.3 74.9 72.7 72.4 72.9 72.6 72.8 73.2 73.6 74.4 75.2 75.3 76.6 77.4
GN 91.8 87.0 85.3 86.1 86.3 86.4 86.5 86.6 87.3 87.0 87.5 88.3 89.1 89.0 89.0 89.8
Other cause 77.2 76.3 76.9 72.4 70.6 70.4 69.3 68.8 69.3 70.5 70.8 70.9 70.9 71.7 71.5 72.6

Adjusted†

All 72.4 71.7 73.7 75.1 75.0 75.2 75.3 75.2 75.7 75.9 76.4 76.7 77.3 77.9 78.3 79.1

Age (years)
0–19 92.5 92.8 90.1 92.4 92.7 94.0 92.9 94.6 93.3 95.3 93.9 95.9 96.8 94.3 97.9 97.1
20–44 89.0 90.0 89.5 88.5 90.3 90.6 90.6 90.5 91.0 91.1 91.7 92.1 91.9 92.5 93.1 93.6
45–64 81.6 80.8 82.5 83.9 84.1 84.2 84.2 83.9 84.5 84.4 85.0 85.1 85.7 85.9 86.0 86.8
65–74 67.8 66.0 70.0 72.1 71.6 71.8 71.7 72.2 72.3 73.0 74.0 74.0 74.3 75.6 75.9 76.6
≥75 58.4 58.9 59.0 59.7 58.1 58.2 58.7 58.3 58.9 59.2 59.1 60.0 61.3 61.5 62.4 63.4

Sex
Men 72.0 70.8 72.7 74.2 75.1 75.1 75.3 75.2 75.5 76.0 76.4 76.7 77.1 77.7 78.2 79.0
Women 72.7 72.7 74.8 76.0 74.9 75.3 75.2 75.3 75.8 75.8 76.3 76.8 77.6 78.0 78.5 79.2

Race/ethnicity
White 68.9 68.9 71.5 73.6 73.7 73.8 73.9 74.1 74.5 74.7 75.2 75.4 76.0 76.2 76.8 77.5
Black 79.6 77.5 78.0 77.4 76.7 77.3 77.2 76.5 77.0 77.3 78.3 78.8 79.5 80.4 80.9 81.9
American Indian 89.9 75.7 81.0 81.8 77.8 81.8 84.0 81.4 80.6 82.4 82.2 84.8 80.8 85.1 86.9 85.2
Asian ‡ 75.1 82.6 82.3 84.2 83.6 83.9 84.2 84.8 84.4 84.3 84.1 85.7 87.3 86.7 87.1
Other 64.5 66.3 64.0 75.9 77.6 76.5 76.1 76.0 77.1 75.4 73.4 71.7 66.5 70.3 65.2 71.4

Primary diagnosis
Diabetes 70.1 68.4 72.9 75.5 75.4 75.9 75.9 76.2 76.8 76.7 77.6 77.8 78.5 79.4 79.7 80.4
HTN 79.2 75.1 75.5 77.0 76.3 76.1 76.7 76.3 76.6 76.9 77.1 77.6 78.3 78.2 79.3 80.0
GN 84.0 79.4 78.2 80.3 81.0 80.7 81.3 81.2 81.8 81.6 82.3 83.1 84.1 84.2 84.3 85.1
Other cause 71.4 71.7 72.6 69.3 68.8 68.7 67.9 67.3 67.8 69.0 69.3 69.6 69.7 70.6 70.5 71.5

Censored at lost to follow-up or recovery of function from day 1 to 1 year by age, sex, race, ethnicity, and primary diagnosis. GN, glomerulonephritis; HTN, hypertension.
* The Centers for Medicare and Medicaid Services began collecting Hispanic ethnicity data in April 1995.
† Adjusted for age, sex, race, and primary cause of end-stage renal disease.
‡ Values for cells with 10 or fewer patients are suppressed.

SOURCE: Reference 1
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APPENDIX 22.2. Crude and Adjusted 5-Year Survival Probabilities Among Incident End-Stage Renal Disease Persons, by Age, Sex, 
Race/Ethnicity, and Primary Diagnosis, U.S., 1980–2007

CHARACTERISTICS

PERCENT

1980 1985 1990 1995 2000 2001 2002 2003 2004 2005 2006 2007

Crude

All 42.3 36.7 36.8 36.0 35.7 36.3 36.6 37.1 38.3 39.3 40.1 41.0

Age (years)
0–4 82.2 80.3 71.7 76.3 70.7 80.7 80.1 80.5 78.5 82.1 79.6 82.6
5–9 88.8 89.6 90.7 92.7 89.7 90.3 90.4 92.5 94.4 95.0 89.0 94.3
10–14 88.6 90.4 90.6 92.0 93.0 91.5 89.9 92.3 93.9 95.8 96.7 95.2
15–19 89.8 86.4 88.1 90.2 88.7 89.0 89.7 89.2 88.4 90.0 89.5 90.6
20–29 77.1 75.5 77.1 76.9 79.0 79.9 80.1 81.0 81.8 80.2 82.2 81.0
30–39 64.3 63.7 67.1 66.6 70.1 70.3 71.6 71.7 73.3 73.6 74.2 74.5
40–49 54.3 55.9 58.2 58.9 60.3 61.2 60.3 61.0 62.5 64.1 64.7 65.7
50–59 41.2 37.9 42.8 44.9 47.5 48.3 48.9 49.3 51.1 52.1 52.6 54.2
60–64 31.2 26.3 30.5 32.8 35.9 36.8 38.5 39.8 40.7 41.6 42.2 44.1
65–69 21.0 18.7 22.5 24.4 27.7 29.4 30.3 31.6 32.9 33.7 34.9 35.9
70–74 15.3 14.6 16.6 18.6 20.4 21.5 22.2 22.6 23.6 25.6 26.7 27.6
75–79 11.1 9.0 10.6 12.9 14.9 14.9 15.4 16.1 16.9 18.0 18.8 19.7
80–84 4.8 6.8 8.6 8.5 8.5 9.7 10.5 10.8 11.3 12.5 12.8 13.2
≥85 5.5 2.1 4.6 4.8 4.6 5.6 5.5 5.1 6.4 6.0 6.6 7.1

Sex 
Men 42.2 36.6 37.5 37.4 36.7 37.3 37.5 38.0 39.0 39.9 41.0 41.4
Women 42.3 36.8 35.9 34.4 34.6 35.1 35.4 36.0 37.4 38.5 39.0 40.6

Race/ethnicity
White 41.2 35.5 33.2 31.6 31.4 32.0 32.2 32.6 33.8 35.0 35.5 36.3
Black 45.1 38.9 43.5 43.2 42.7 43.4 43.7 44.3 45.9 46.8 48.6 49.7
American Indian 54.9 37.9 40.9 44.8 39.3 47.0 45.5 48.2 46.3 50.0 51.1 50.3
Asian 94.0 42.8 49.7 45.9 48.4 50.1 50.6 50.7 52.5 52.3 53.1 53.9
Other 25.9 47.0 46.9 38.3 42.6 40.8 42.2 43.8 44.1 42.9 28.8 25.0
Hispanic* 45.2 46.3 47.1 48.2 49.6 50.5 51.7 52.8
Non-Hispanic* 34.0 34.8 35.0 35.4 36.5 37.6 38.2 39.1

Primary diagnosis
Diabetes 32.0 26.1 28.2 29.2 30.5 32.0 32.3 33.3 34.7 35.8 36.9 37.8
HTN 45.2 32.3 32.7 33.5 32.9 32.4 33.1 33.6 34.4 35.0 36.1 37.7
GN 66.3 54.1 56.2 57.1 59.2 59.9 60.6 62.0 62.6 63.4 64.0 65.5
Other cause 37.4 40.6 44.3 40.8 39.8 40.4 39.7 39.6 41.2 42.8 42.9 43.4

Adjusted†

All 28.8 27.2 31.0 33.1 35.5 36.5 37.0 37.7 38.8 39.7 40.5 41.4

Age (years)
0–19 80.6 77.3 78.4 81.5 81.4 84.7 80.6 86.2 83.0 89.4 85.0 87.8
20–44 61.5 62.7 66.3 65.7 68.0 68.5 69.1 69.4 71.2 71.7 72.7 73.3
45–64 36.0 34.1 40.1 44.0 47.3 48.2 48.8 49.4 50.8 51.8 52.4 53.7
65–74 18.3 16.2 19.6 21.8 24.7 26.3 26.9 28.0 29.2 30.6 31.8 32.7
≥75 9.8 8.1 9.5 10.6 11.5 12.2 12.5 12.8 13.7 14.4 15.0 15.4

Sex
Men 28.5 25.9 30.5 33.1 35.4 36.4 36.9 37.6 38.7 39.6 40.5 41.1
Women 28.9 28.7 31.5 33.1 35.6 36.6 37.1 37.7 38.9 39.9 40.4 41.7

Race/ethnicity
White 25.9 25.7 28.5 30.9 33.8 34.9 35.4 35.9 37.2 38.1 38.5 39.3
Black 33.7 28.9 34.9 36.3 37.4 38.4 38.8 39.3 40.5 41.6 43.4 44.5
American Indian 40.3 29.8 33.9 39.2 38.9 41.8 41.4 44.7 42.7 45.8 45.2 46.6
Asian 81.1 29.9 40.6 42.2 47.0 49.2 50.0 50.9 52.3 52.3 53.1 54.4
Other 18.9 35.0 26.7 33.1 38.1 37.3 37.6 40.6 40.6 40.6 28.8 25.3

Primary diagnosis
Diabetes 22.4 19.3 24.0 27.3 30.5 32.4 32.5 33.7 34.9 36.0 36.7 37.7
HTN 37.2 31.7 34.9 36.8 38.5 38.3 39.5 39.6 40.5 41.2 42.1 43.0
GN 43.8 37.1 40.9 43.7 46.7 47.1 48.7 49.7 49.8 51.1 51.9 53.0
Other cause 29.4 32.4 36.4 35.9 36.6 37.4 37.1 36.9 38.8 40.0 40.4 41.1

Censored at lost to follow-up or recovery of function, from day 1 to one year, by age, sex, race/ethnicity, and primary diagnosis. GN, glomerulonephritis; HTN, hypertension.
* The Centers for Medicare and Medicaid Services began collecting Hispanic ethnicity data in April 1995.
† Adjusted for age, sex, race, and primary cause of end-stage renal disease.

SOURCE: Reference 1
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APPENDIX 22.3. Adjusted Survival Probabilities Among Persons Initiating End-Stage Renal Disease Treatment in 2007, U.S.

2007 COHORT

PERCENT

3 Months 12 Months 24 Months 36 Months 60 Months

Treatment
Dialysis 91.7 76.4 64.4 54.9 40.4
Hemodialysis 91.4 75.8 63.7 54.2 39.8
Peritoneal dialysis 96.9 87.6 74.9 64.7 49.2
Deceased-donor transplant 96.8 92.5 88.4 84.1 73.7
Living donor transplant 99.2 97.6 95.5 93.0 87.0

Age (years)          
0–19 98.4 95.5 91.9 89.7 87.0
20–44 97.7 91.9 85.9 81.0 73.0
45–64 95.4 85.0 75.7 67.3 53.3
65–74 91.0 74.2 60.8 49.9 33.0
≥75 84.6 60.4 43.4 31.5 15.8

Sex          
Men 91.7 76.9 64.9 55.4 41.3
Women 91.9 76.8 65.2 55.9 41.6

Race          
White 91.0 75.2 62.9 53.3 38.8
Black/African American 93.2 79.1 68.0 59.0 45.3
American Indian 95.1 84.7 71.6 61.6 46.8
Asian 94.6 83.8 74.9 66.9 53.7
Other 91.1 72.1 55.4 44.2 26.1

Primary cause of ESRD          
Diabetes 92.7 77.6 64.4 53.7 37.2
Hypertension 92.0 77.9 66.4 57.4 43.6
Glomerulonephritis 94.3 83.4 73.9 66.3 53.8
Other 88.2 70.0 59.6 52.0 41.6

Adjusted survival probabilities, from day 1, in the ESRD population. Reference population: incident ESRD persons in 2011. Adjusted for age, sex, race, Hispanic ethnicity, and 
primary diagnosis. ESRD, end-stage renal disease.

SOURCE: Reference 1

APPENDIX 22.4. Crude Mortality Rates Among Prevalent End-Stage Renal Disease Persons With Diabetes, by Age, Sex, and Race/Ethnicity, 
U.S., 2012

AGE 
(YEARS)

ALL MEN WOMEN

Non-Hispanic Non-Hispanic Non-Hispanic

All White Af Am Am Ind Asian Hisp All White Af Am Am Ind Asian Hisp All White Af Am Am Ind Asian Hisp

All 170.8 211.0 146.6 138.3 140.3 139.3 166.6 208.3 136.8 133.9 135.0 133.1 176.0 214.8 156.5 142.5 147.2 147.7

0–19 31.6 33.3 39.4 33.9 20.2 23.1 28.6 31.0 34.1 30.7 19.3 20.9 34.0 36.0 42.1 33.9 21.1 24.5

20–29 71.0 73.6 81.2 64.7 41.5 50.1 60.1 66.9 65.7 62.5 39.9 45.2 78.5 79.0 90.3 65.6 42.9 54.3

30–39 70.4 80.1 73.0 64.7 45.7 54.8 66.0 77.0 65.8 62.2 46.2 52.4 75.4 84.0 80.4 66.6 45.2 58.0

40–49 80.5 90.2 82.8 80.0 62.0 62.4 77.1 87.9 77.0 79.0 60.6 60.7 85.8 93.8 90.6 81.3 64.5 65.6

50–59 114.7 133.1 112.2 107.1 89.9 93.0 111.5 130.0 107.7 105.7 90.1 90.5 119.3 138.3 117.7 108.6 89.7 97.3

60–64 150.8 184.8 130.9 135.8 116.0 129.8 148.7 182.9 126.0 134.4 112.5 127.6 153.6 187.4 136.2 137.2 121.0 132.8

65–69 184.0 220.9 162.7 166.9 134.2 157.1 186.1 221.5 163.3 168.8 134.7 156.9 181.6 220.1 162.3 165.2 133.5 157.4

70–74 224.9 274.1 189.0 211.9 163.3 196.3 229.0 274.7 190.8 220.5 164.8 195.3 220.4 273.3 187.5 206.3 161.5 197.3

75–79 281.5 338.1 239.3 233.0 207.2 244.2 291.7 347.4 234.3 247.7 212.2 250.6 271.5 326.6 242.8 224.3 202.3 237.9

80–84 357.3 426.2 281.7 292.6 272.2 309.8 382.3 446.1 290.2 307.6 280.7 324.7 334.0 402.6 276.6 283.0 265.0 296.3

≥85 446.8 525.4 358.5 335.5 342.8 384.6 478.2 548.9 361.7 354.1 356.2 404.4 419.2 498.1 356.9 327.2 331.9 367.5

Rates are per 1,000 patient-years at risk, period prevalent ESRD persons, 2012, by age as of January 1, sex, and race. Af Am, African American; Am Ind, American Indian; ESRD, 
end-stage renal disease; Hisp, Hispanic. 

SOURCE: Reference 1
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APPENDIX 22.5. Crude and Adjusted Annual Mortality Rates Among End-Stage Renal Disease Persons, by Age, Sex, Race, Primary 
Diagnosis, and Patient Vintage, U.S., 1985–2012

CHARACTERISTICS

DEATHS PER 1,000 PATIENT-YEARS AT RISK

1985 1990 1995 2000 2005 2006 2007 2008 2009 2010 2011 2012

Crude 185.5 185.0 186.6 187.5 175.9 171.9 165.0 159.1 155.8 150.5 147.0 137.9

Adjusted 242.1 221.6 203.8 194.3 177.5 172.8 165.9 159.8 156.1 150.5 147.0 137.8

Age (years)
0–19 48.3 38.0 33.6 31.2 30.4 28.3 23.2 22.1 20.9 23.5 20.3 18.0
20–44 81.4 75.2 74.3 66.7 62.7 61.2 59.1 56.4 55.6 52.8 50.8 47.4
45–64 185.3 161.4 144.1 133.0 121.8 118.9 113.6 109.3 106.7 102.8 100.8 95.0
65–74 332.0 303.3 272.0 258.0 229.4 219.9 209.0 200.6 196.5 189.5 183.2 171.5
≥75 443.6 433.1 412.8 414.0 384.7 376.4 365.0 351.7 342.6 329.7 322.1 301.5

Sex
Men 251.3 230.8 206.6 193.7 177.9 173.1 166.3 160.4 157.3 151.7 148.2 139.2
Women 230.9 210.2 200.7 195.5 177.4 173.0 166.0 159.6 155.0 149.4 145.7 136.5

Race
White 256.8 233.5 215.9 203.9 183.0 178.6 171.8 166.1 162.7 157.9 155.4 146.2
Black/African American 220.7 204.5 189.3 183.8 176.2 171.0 163.2 156.2 151.6 144.3 138.5 129.3
American Indian 206.5 193.1 173.3 175.4 158.4 154.3 147.6 147.7 149.8 140.7 132.7 126.4
Asian 181.4 168.7 147.1 142.2 125.0 120.6 118.1 109.9 107.4 102.2 100.4 94.5
Other 305.6 291.3 219.6 194.8 173.9 165.0 151.9 150.0 141.7 133.5 125.9 101.7

Primary cause of ESRD
Diabetes 296.5 261.8 239.0 227.6 203.5 198.3 189.9 182.6 178.2 172.6 169.5 158.4
HTN 211.4 207.4 194.5 184.0 170.6 167.4 161.5 156.8 152.8 147.5 143.0 133.9
GN 164.9 167.9 151.6 142.2 125.3 121.0 116.6 110.3 109.4 105.0 100.6 94.3
Other cause 222.2 194.3 180.4 176.7 170.1 163.9 157.0 150.8 147.1 140.0 136.4 129.6

Patient vintage
<2 years 279.2 251.8 230.1 218.6 205.1 200.8 193.9 187.7 184.0 176.9 172.0 160.9
2–<5 years 234.4 219.5 207.5 192.1 172.0 167.5 160.0 153.7 150.1 145.6 142.3 135.5
≥5 years 205.0 188.2 170.0 166.9 149.1 143.7 137.2 131.3 127.5 122.6 120.3 111.7

Death rates per 1,000 patient-years at risk, period prevalent persons, by age, sex, race, ethnicity, primary diagnosis, and patient vintage. For each of the variables, rates are 
adjusted for the remaining variables. Overall mortality rates are adjusted for age, sex, race, primary diagnosis, and vintage. Reference population: 2011 prevalent ESRD popula-
tion. ESRD, end-stage renal disease; GN, glomerulonephritis; HTN, hypertension.

SOURCE: Reference 1
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