Design of Catheter Coatings for Localized Release of Antimicrobial Peptide Mimetics

Sean Palecek and David Lynn

DEPARTMENT OF

Chemical and Biological Engineering

College of Engineering

University of Wisconsin-Madison

β -peptide mimetics of antimicrobial peptides

Antimicrobial α-peptides

Components of the innate immune system
Kill bacterial and fungal pathogens
Membrane disruption based mechanisms: more difficult for pathogens to develop resistance

Antimicrobial β-peptides

Oligomers of β-amino acids Peptidomimetics of AMPs Can be designed to fold into specific secondary structures

Limitations

Degradation by cellular proteases Low activity at physiologic ionic strength

Advantages

Stable in physiologic conditions, high ionic strength and against proteolytic enzymes

Antifungal β-peptides

- Antifungal β-peptide
 - Globally amphiphillic
 - Length \rightarrow 9-mer, 10-mer
 - Charge \rightarrow +3, +4
- Identified β-peptides with antifungal activity against *C. albicans* and selective (non-toxic towards hRBCs)
- Fluorescently labeled peptide for tracking

Effect of hydrophobicity and helicity on β -peptide activity and selectivity

1 : X = H, Y = β^3 -hAla, Z = β^3 -hLys **2** : X = H, Y = β^3 -Et, Z = β^3 -hLys **3** : X = H, Y = β^3 -Et, Z = β^3 -hArg **4** : X = H, Y = β^3 -hVal, Z = β^3 -hLys **5** : X = H, Y = β^3 -hVal, Z = β^3 -hLys **6** : X = H, Y = ACHC, Z = β^3 -hLys **7** : X = H, Y = β^3 -hPhe, Z = β^3 -hLys

 $\begin{array}{ll} \textbf{17}: X = H, & Y = \beta^3 \text{-hVal}, Z = \beta^3 \text{-hLys} \\ \textbf{18}: X = H, & Y = \beta^3 \text{-hVal}, Z = \beta^3 \text{-hArg} \\ \textbf{19}: X = \beta^3 \text{-hTyr}, Y = \beta^3 \text{-Et}, & Z = \beta^3 \text{-hArg} \\ \textbf{20}: X = \beta^3 \text{-hTyr}, Y = \beta^3 \text{-hVal}, Z = \beta^3 \text{-hLys} \\ \textbf{21}: X = \beta^3 \text{-hTyr}, Y = \beta^3 \text{-hVal}, Z = \beta^3 \text{-hArg} \end{array}$

THE UNIVERSITY

24 : $A = \beta^{3}$ -iffyr, $Y = \beta^{3}$ -Et, $Z = \beta^{3}$ -hArg

β -peptide antifungal and hemolytic activity

p-repude	(min ± SD)	(µg/mL)	at MIC ± SD
1	19.3 ± 0.1	> 128	$2.6 \pm 0.9^{*}$
2	22.5 ± 0.2	64	3.0 ± 2.4
3	23.2 ± 0.1	32	1.1 ± 2.7
4	24.5 ± 0.2	8	2.3 ± 0.7
5	25.4 ± 0.1	8	1.6 ± 0.3
6	23.1 ± 0.2	16	0.3 ± 1.7
7	23.8 ± 0.1	16	3.0 ± 2.3
8	26.2 ± 0.2	8	36.4 ± 6.0
9	20.4 ± 0.2	128	1.4 ± 0.6
10	23.5 ± 0.1	16	9.4 ± 9.3
11	24.2 ± 0.1	16	7.5 ± 5.2
12	25.7 ± 0.1	8	37 ± 15
13	26.5 ± 0.2	8	39.8 ± 2.7
14	24.0 ± 0.2	16	9.5 ± 2.2
15	24.6 ± 0.2	16	11.6 ± 2.1
16	27.4 ± 0.2	4	72 ± 14
17	22.5 ± 0.1	128	2.8 ± 0.1
18	23.5 ± 0.1	64	0.9 ± 1.9
19	22.7 ± 0.2	128	3.2 ± 2.9
20	24.3 ± 0.2	32	8.8 ± 3.6
21	25.2 ± 0.2	16	4.2 ± 2.0
22	22.8 ± 0.2	> 128	$3.1 \pm 4.4^*$
23	23.8 ± 0.1	128	4.5 ± 3.2
24	24.6 ± 0.1	32	7.2 ± 5.0
25	25.7 ± 0.2	16	7.2 ± 3.4

MIC

% Hemolysis

Lee, M.-R.*, Raman, N*., et al. ACS Chemical Biology, (2014) 9, 1613

β-peptide hydrophobicity correlates with antifungal and hemolytic activity

D4-1 #	RT ^a	MIC ^b (μg/mL)		
Peptide #	(min)	ATCC90028	K1	SC5314
1	19.3	>128	>128	>128
2	22.5	64	64	64
6	23.1	32	32	16
3	23.2	32	32	32
7	23.8	32	16	16
4	24.5	16	16	8
5	25.4	16	8	8
8	26.2	8	4	8

- Window of hydrophobicity where βpeptides have selective antifungal activity
- β-Peptide planktonic MICs were similar across multiple C. albicans strains

β -peptide helicity affects antifungal activity

> ACHC incorporation increases antifungal activity in more hydrophobic β -peptides

Lee, M.-R.*, Raman, N*., et al. ACS Chemical Biology, (2014) 9, 1613

β -peptides form pore-like structures in the plasma membrane

Lee, M.R. et al. Cell Chem Biol. 2018.

β-peptides disrupt intracellular organelles

β-peptides disrupt the cell membrane, enter the cell and lyse the nucleus and vacuole <u>WISCONSIN</u> MADISON Lee, M.R. et al. *Cell Chem Biol.* 2018.

Polyelectrolyte multilayer films

• Layer-by-layer adsorption of oppositely charged polyelectrolytes

- Electrostatic self assembly process
- Compatible with biomolecules
- Versatile, inexpensive
- Coat topologically complex substrates

PEM fabrication in catheters

Supra-linear PEM film growth of PGA/PLL multilayers fabricated on the inner surfaces of catheter tubes

Loading and release of β-peptide from PEMcoated catheters

 NH_2

Coumarin-linker-(ACHC-β³Val-β³Lys)₃

- β-Peptide can be loaded post PEM fabrication
- Multilayer film enhances the localization of the peptide on the inner surface of the catheter
- β-Peptide is gradually released from film coated, peptide loaded catheters over the course of 60-80 days.

Prevention of *C. albicans* biofilms in β-peptideloaded catheters

Catheters coated with β-peptide-loaded films inhibit C. albicans biofilm formation

Raman, N., et al., Journal of controlled release (2014) 191, 54

Reduction of biofilm formation *in vivo* on β -peptide loaded catheters

Rat central venous catheter model

Raman, N. et al., ACS Biomaterials Science & Engineering (2016) 2, 112

β -peptide activity in synthetic urine

β -peptide release from films on urinary catheters

Raman, N. et al. Acta Biomater. 2016. 43:240-250.

β-peptide-loaded catheters resist *C. albicans* biofilm formation in SU

HA/CH films loaded with β -peptide prevent *C. albicans* biofilm formation on catheters *in vitro*

With β -peptide

Raman, N. et al. Acta Biomater. 2016. 43:240-250.

α/β -peptide analogues of aurein 1.2

Lee, M.R. et al. ACS Chem Biol. 2017. 12:2975-2980

Active and selective α/β -aurein analogues

Active and selective α/β -aurein analogues at intermediate hydrophobicity

Lee, M.R. et al. ACS Chem Biol. 2017. 12:2975-2980

Summary

- Amphiphilic, helical β-peptides exhibit selective antifungal activity
- β-peptides kill *C. albicans* by plasma and intracellular membrane lysis
- Delivery of antifungal β-peptides from polyelectrolyte multilayers prevents *C. albicans* biofilms on catheters *in vitro* and *in vivo*
- α/β-analogues of aurein 1.2 have been engineered for selective antifungal activity

Acknowledgements

David Lynn

David Andes

Funding **NIH/NIAID NSF NSEC**

Recruiting postdocs: peptide engineering, delivery, applications

Namrata Raman Sam

