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β-peptide mimetics of antimicrobial peptides

Antimicrobial α-peptides
•Components of the innate immune system
•Kill bacterial and fungal pathogens
•Membrane disruption based mechanisms: more 
difficult for pathogens to develop resistance 

AMPs 

Limitations
Degradation by cellular proteases
Low activity at physiologic ionic strength

Antimicrobial β-peptides
Oligomers of β-amino acids
Peptidomimetics of AMPs
Can be designed to fold into specific secondary 
structures

β-Peptide

Advantages
Stable in physiologic conditions, high ionic 
strength and against proteolytic enzymes



Antifungal β-peptides

• Antifungal β-peptide
• Globally amphiphillic
• Length  9-mer, 10-mer
• Charge  +3, +4

• Identified  β-peptides with 
antifungal activity  against    
C. albicans and selective 
(non-toxic towards hRBCs)

• Fluorescently labeled peptide 
for tracking 

Blue – Labeled peptide
Green – Cytoplasm stain
Red – Intra-vacuolar structures 
(only in metabolic active cells)

Karlsson, A. J. et al., ACS Chemical Biology (2009)



Effect of hydrophobicity and helicity on β-peptide activity and 
selectivity
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1 : X = Η, Y = β3-hAla, Z = β3-hLys
2 : X = Η, Y = β3-Et, Z = β3-hLys
3 : X = Η, Y = β3-Et, Z = β3-hArg
4 : X = Η, Y = β3-hVal, Z = β3-hLys
5 : X = Η, Y = β3-hVal, Z = β3-hArg
6 : X = Η, Y = ACHC, Z = β3-hLys
7 : X = Η, Y = ACHC, Z = β3-hArg
8 : X = Η, Y = β3-hPhe, Z = β3-hLys

9 : X = β3-hTyr, Y = β3-hAla, Z = β3-hLys
10 : X = β3-hTyr, Y = β3-Et, Z = β3-hLys
11 : X = β3-hTyr, Y = β3-Et, Z = β3-hArg
12 : X = β3-hTyr, Y = β3-hVal, Z = β3-hLys
13 : X = β3-hTyr, Y = β3-hVal, Z = β3-hArg
14 : X = β3-hTyr, Y = ACHC, Z = β3-hLys
15 : X = β3-hTyr, Y = ACHC, Z = β3-hArg
16 : X = β3-hTyr, Y = β3-hPhe, Z = β3-hLys
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17 : X = Η, Y = β3-hVal, Z = β3-hLys
18 : X = Η, Y = β3-hVal, Z = β3-hArg
19 : X = β3-hTyr, Y = β3-Et, Z = β3-hArg
20 : X = β3-hTyr, Y = β3-hVal, Z = β3-hLys
21 : X = β3-hTyr, Y = β3-hVal, Z = β3-hArg

N
H

N
H

N
H

NH2

OOO Z
X

Y

3

22 : X = Η, Y = β3-Et, Z = β3-hLys
23 : X = Η, Y = β3-Et, Z = β3-hArg
24 : X = β3-hTyr, Y = β3-Et, Z = β3-hLys
25 : X = β3-hTyr, Y = β3-Et, Z = β3-hArg

Lee, M.-R.*, Raman, N*., et al. ACS Chemical Biology, (2014) 9, 1613   



β-peptide antifungal and hemolytic activity
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β-Peptide RT                       
(min ± SD)

MIC        
(µg/mL)

% Hemolysis       
at MIC ± SD

1 19.3 ± 0.1 > 128 2.6 ± 0.9*

2 22.5 ± 0.2 64 3.0 ± 2.4
3 23.2 ± 0.1 32 1.1 ± 2.7
4 24.5 ± 0.2 8 2.3 ± 0.7
5 25.4 ± 0.1 8 1.6 ± 0.3
6 23.1 ± 0.2 16 0.3 ± 1.7
7 23.8 ± 0.1 16 3.0 ± 2.3
8 26.2 ± 0.2 8 36.4 ± 6.0
9 20.4 ± 0.2 128 1.4 ± 0.6
10 23.5 ± 0.1 16 9.4 ± 9.3
11 24.2 ± 0.1 16 7.5 ± 5.2
12 25.7 ± 0.1 8 37 ± 15
13 26.5 ± 0.2 8 39.8 ± 2.7
14 24.0 ± 0.2 16 9.5 ± 2.2
15 24.6 ± 0.2 16 11.6 ± 2.1
16 27.4 ± 0.2 4 72 ± 14
17 22.5 ± 0.1 128 2.8 ± 0.1
18 23.5 ± 0.1 64 0.9 ± 1.9
19 22.7 ± 0.2 128 3.2 ± 2.9
20 24.3 ± 0.2 32 8.8 ± 3.6
21 25.2 ± 0.2 16 4.2 ± 2.0
22 22.8 ± 0.2 > 128 3.1 ± 4.4*

23 23.8 ± 0.1 128 4.5 ± 3.2
24 24.6 ± 0.1 32 7.2 ± 5.0
25 25.7 ± 0.2 16 7.2 ± 3.4

 

 

 

 

Lee, M.-R.*, Raman, N*., et al. ACS Chemical Biology, (2014) 9, 1613   



β-peptide hydrophobicity correlates with 
antifungal and hemolytic activity
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 Window of hydrophobicity where β-
peptides have selective antifungal 
activity

Peptide # RT a 
(min) 

MIC b (µg/mL) 
ATCC90028        K1     SC5314 

1 19.3 >128 >128 >128 
2 22.5 64 64 64 
6 23.1 32 32 16 
3 23.2 32 32 32 
7 23.8 32 16 16 
4 24.5 16 16 8 
5 25.4 16 8 8 
8 26.2 8 4 8 

 

 β-Peptide planktonic MICs were 
similar across multiple C. 
albicans strains 

Lee, M.-R.*, Raman, N*., et al. ACS Chemical Biology, (2014) 9, 1613   



β-peptide helicity affects antifungal activity
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1-16:  3 ACHC side chains
17-25:  no ACHC

ACHC incorporation increases antifungal activity in 
more hydrophobic β-peptides

Lee, M.-R.*, Raman, N*., et al. ACS Chemical Biology, (2014) 9, 1613   



β-peptides form pore-like structures in the plasma membrane

Cooperative binding of β-peptides 
to synthetic vesicles

β-peptides form 300 nm aggregates 
on the surface of C. albicans cells 

Lee, M.R. et al.  Cell Chem Biol. 2018.



β-peptides disrupt intracellular organelles

β-peptides disrupt the cell membrane, enter the cell and lyse the nucleus and vacuole

Lee, M.R. et al.  Cell Chem Biol. 2018.



Polyelectrolyte multilayer films

• Layer-by-layer adsorption of oppositely charged polyelectrolytes

Polyanion Wash WashPolycation

• Electrostatic self assembly process
• Compatible with biomolecules
• Versatile, inexpensive 
• Coat topologically complex substrates



PEM fabrication in catheters

860 μm id polyethylene tube 
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Loading and release of β-peptide from PEM-
coated catheters

Tube/Film
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Coumarin-linker-(ACHC-β3Val-β3Lys)3

β-Peptide can be loaded
post PEM fabrication

 Multilayer film enhances
the localization of the
peptide on the inner
surface of the catheter

 β-Peptide is gradually
released from film coated,
peptide loaded catheters
over the course of 60-80
days.

Raman, N., et al., Journal of controlled release (2014) 191, 54



Prevention of C. albicans biofilms in β-peptide-
loaded catheters

C. albicans inoculum
Tube

Biofilm

48 hours 
37oC

Quantify differences in metabolic 
activity

SEM to visualize extent of 
biofilms
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 Catheters coated with β-peptide-loaded films inhibit C. albicans biofilm 
formation

Raman, N., et al., Journal of controlled release (2014) 191, 54



Reduction of biofilm formation in vivo on 
β-peptide loaded catheters

 Rat central venous catheter model
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Raman, N. et al., ACS Biomaterials Science & Engineering (2016) 2, 112



β-peptide activity in synthetic urine

β-peptide remains 
helical in synthetic 
urine

MIC=16 µg/ml (8 in RPMI)
MBPC=32 µg/ml (32 in RPMI)



β-peptide release from films on urinary catheters

polyethylene polyurethane silicone

Fluorescent 
β-peptide

Polyethylene  – Circles
Polyurethane  – Squares
Silicone – Triangles

β-peptide release over
2-4 months

Raman, N. et al.  Acta Biomater.. 2016. 43:240-250.



β-peptide-loaded catheters resist C. albicans biofilm formation in SU

No β-peptide

With β-peptideHA/CH films loaded with β-peptide
prevent C. albicans biofilm formation 
on catheters in vitro

Raman, N. et al.  Acta Biomater.. 2016. 43:240-250.



α/β-peptide analogues of aurein 1.2
α/β peptides mimic sequence and structure of aurein 1.2

Lee, M.R. et al.  ACS Chem Biol. 2017. 12:2975-2980



Active and selective α/β-aurein analogues
Peptide activity Peptide selectivity

SI = HC10/MICOpen:  no ACHC
Closed  contain ACHC

Active and selective α/β-aurein analogues at intermediate hydrophobicity

Lee, M.R. et al.  ACS Chem Biol. 2017. 12:2975-2980



Summary
• Amphiphilic, helical β-peptides 

exhibit selective antifungal activity
• β-peptides kill C. albicans by 

plasma and intracellular 
membrane lysis

• Delivery of antifungal β-peptides 
from polyelectrolyte multilayers 
prevents C. albicans biofilms on 
catheters in vitro and in vivo

• α/β-analogues of aurein 1.2 have 
been engineered for selective 
antifungal activity
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