Ifechukwude Ebenuwa, M.D., M.H.Sc., NIH Distinguished Scholar
Ifechukwude Ebenuwa.
Scientific Focus Areas: Clinical Research, Epidemiology, Health Disparities

Clinical Trials

Open studies conducted by NIDDK Principal Investigators appear below. Study statuses may include the following:

  • Open: Recruiting - Currently recruiting participants and open to everyone who meets eligibility criteria.
  • Open: Active, Not Recruiting - Participants are receiving an intervention or being examined, however new participants are not being recruited or enrolled.
  • Open: Enrolling by Invitation - People in a particular population were selected in advance and invited to participate. The study is not open to everyone who meets the eligibility criteria.
  • Open: Available for Expanded Access - Patients who are not participants in the clinical study may be able to gain access to the drug, biologic, or medical device being studied.

Studies Seeking Patients

Famine From Feast: Linking Vitamin C, Red Blood Cell Fragility, and Diabetes

Diabetes type two is a debilitating disease that leads to chronic morbidity such as accelerated microvascular disease. Accelerated microvascular disease may produce blindness, end stage renal disease, myocardial infarction, stroke, and limb ischemia. Strategies to prevent or delay microvascular disease have the potential to improve the lives of millions and prevent catastrophic illness. The major focus of prevention of microvascular disease in diabetes has been on the endothelium and its role in protection of blood vessels. An unexpected means to prevent microvascular disease in diabetes may be coupled to the function of vitamin C in red blood cells (RBCs) of diabetic subjects. Based on new and emerging data, vitamin C concentrations in RBCs may be inversely related to glucose concentrations found in diabetes. Based on animal data, we hypothesize that RBCs with low vitamin C levels may have decreased deformability, leading to slower flow in capillaries and microvascular hypoxia, the hallmark of diabetic microangiopathy. Low vitamin C concentrations in RBCs of diabetic subjects may be able to be increased, by using vitamin C supplements. Findings in animals may not accurately reflect effects in humans because of species differences in mechanisms of vitamin C entry into RBCs. Therefore, clinical research is essential to characterize vitamin C physiology in RBCs of diabetic subjects. In this protocol we will investigate physiology of vitamin C in RBCs of diabetic subjects as a function of glycemia, without vitamin C supplementation (stage 1) and with vitamin C supplementation (stage 2). We will screen type II diabetic subjects on insulin and/or oral hypoglycemic medication(s) and select those with hemoglobin A1C concentrations of less than or equal to 12%. Selected subjects may be hospitalized twice, each time for approximately one week. The primary objective of the first hospitalization (stage 1) will be to evaluate the effect of hyperglycemia on vitamin C RBC physiology regardless of baseline vitamin C concentrations (without any vitamin C supplementation). The second hospitalization (stage 2) investigates the effect (if any) of vitamin C supplementation to changes in RBC physiology during euglycemic and hyperglycemic states. As inpatients, subjects will have two venous sampling periods each of approximately 24 hours. On admission, subjects may be fitted with continuous glucose monitors (CGMs), oral hypoglycemic agents will be discontinued, and basal-bolus insulin regimen initiated. Insulin doses will be clinically determined and titrated to achieve euglycemia (fasting and pre-meal glucoses \<140mg/dl) prior to the first sampling period (euglycemic sampling). The first sampling period will be performed under conditions of euglycemic control for 24 hours. The second sampling period will be performed under controlled hyperglycemia induced by withholding basal and bolus insulin and providing a high carbohydrate load diet (70-75% carbohydrate). Correction-scale insulin will be provided for glucoses \>350-400mg/dl. Hyperglycemia will not exceed 9 hours, and will be reversed by reinstituting insulin. During the two sampling periods, samples will be withdrawn via venous catheter for RBC deformability, vitamin C concentrations and other related research studies. Following completion of stage 1, subjects considered for participation in stage 2 will be provided a prescription for vitamin C 500mg twice daily. Given that vitamin C and vitamin E are related antioxidants, and that both vitamins appear to be associated with RBC rigidity, diabetic subjects may also be given a prescription for 400 international units (IU) of vitamin E (RRR alpha tocopherol) daily. Subjects will continue vitamin C and E supplementation for a minimum of 8 weeks depending on RBC vitamin C concentrations. To evaluate any effect of vitamin E supplementation, plasma and RBC vitamin E levels may be measured concurrently with vitamin C levels during various phases of stages 1 and 2. All subjects will be seen as outpatients at biweekly or monthly intervals with regular measurement of plasma and RBC vitamin C concentrations. Target RBC vitamin C concentration \>30uM is required prior to stage 2 inpatient sampling studies. Vitamins C and E supplementation will be discontinued upon inpatient admission for stage 2. Risk of both vitamin supplements are minimal as both supplementation doses are safe. Outcomes are to measure RBC rigidity and vitamin concentrations before and after supplementation. After a minimum of 8 weeks (depending on RBC vitamin C levels), subjects will be hospitalized again, and sampling repeated as described. In this manner, each subject serves as his/her own control, and deformability of red blood cells can be determined in relation to glycemia and to vitamin C concentrations in RBCs and plasma.

The trial is Open with a status of Recruiting.

Investigator: Ifechukwude C Ebenuwa, M.D.

Referral Contacts: (301) 496-1069

Share this Trial: Email X

Urinary Vitamin C Loss in Diabetic Subjects

Several studies have reported that diabetic subjects have lower plasma vitamin C concentrations than non-diabetic subjects. Although urinary vitamin C loss in diabetic subjects was reported to be increased in two studies, these are difficult to interpret due to lack of controlled vitamin C intake, inadequate sampling, lack of control subjects, or methodology uncertainties in vitamin C assay and sample processing. Consequently, it is unclear whether diabetic subjects truly have both low plasma and high urine vitamin C concentrations. We propose that low plasma vitamin C concentrations in diabetic subjects are due in part to inappropriate renal loss of vitamin C in these subjects but not in healthy controls. We will study nondiabetic controls and cohorts with diabetes. Vitamin C concentrations in plasma, RBCs, and urine will be measured in outpatients. In those willing to be admitted to the Clinical Center, we will measure vitamin C pharmacokinetics to determine the relative bioavailability for vitamin C in individuals with and without abnormal urinary loss of vitamin C (or renal leak). Single nucleotide polymorphisms (SNPs) will be determined in genomic DNA responsible for the two proteins mediating sodium dependent vitamin C transport, SVCT1 and SVCT2. We will also explore mechanisms underlying abnormal urinary vitamin C loss....

The trial is Open with a status of Recruiting.

Investigator: Ifechukwude C Ebenuwa, M.D.

Referral Contacts: (301) 496-1069

Share this Trial: Email X

Last Reviewed July 2024